BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8971994)

  • 1. A tidal breathing model of the forced inspired inert gas sinewave technique.
    Gavaghan DJ; Hahn CE
    Respir Physiol; 1996 Nov; 106(2):209-21. PubMed ID: 8971994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tidal breathing model of the inert gas sinewave technique for inhomogeneous lungs.
    Whiteley JP; Gavaghan DJ; Hahn CE
    Respir Physiol; 2001; 124(1):65-83. PubMed ID: 11084204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary blood flow measured by inspiratory inert gas concentration forcing oscillations.
    Williams EM; Sainsbury MC; Sutton L; Xiong L; Black AM; Whiteley JP; Gavaghan DJ; Hahn CE
    Respir Physiol; 1998 Jul; 113(1):47-56. PubMed ID: 9776550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reconciliation of continuous and tidal ventilation gas exchange models.
    Sainsbury MC; Lorenzi A; Williams EM; Hahn CE
    Respir Physiol; 1997 Apr; 108(1):89-99. PubMed ID: 9178380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical analysis of factors influencing recovery of ventilation distributions from inert gas washout data.
    Meyer D; Groebe K; Thews G
    Adv Exp Med Biol; 1990; 277():615-24. PubMed ID: 1965762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tidal breathing model for the multiple inert gas elimination technique.
    Whiteley JP; Gavaghan DJ; Hahn CE
    J Appl Physiol (1985); 1999 Jul; 87(1):161-9. PubMed ID: 10409570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An IBM PC-based system for the assessment of cardio-respiratory function using oscillating inert gas forcing signals.
    Wong LS; Williams EM; Hamilton R; Hahn CE
    J Clin Monit Comput; 2000 Jan; 16(1):33-43. PubMed ID: 12578093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of dead-space in a model lung using an oscillating inspired argon signal.
    Williams EM; Gavaghan DJ; Oakley PA; Sainsbury MC; Xiong L; Black AM; Hahn CE
    Acta Anaesthesiol Scand; 1994 Feb; 38(2):126-9. PubMed ID: 8171946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of respiratory parameters by using inspired oxygen sinusoidal forcing signals.
    Williams EM; Hamilton R; Sutton L; Hahn CE
    J Appl Physiol (1985); 1996 Aug; 81(2):998-1006. PubMed ID: 8872672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas exchange in a three-compartment lung model analyzed by forcing sinusoids of N2O.
    Hahn CE; Black AM; Barton SA; Scott I
    J Appl Physiol (1985); 1993 Oct; 75(4):1863-76. PubMed ID: 8282644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory and inert gas exchange during high-frequency ventilation.
    Robertson HT; Coffey RL; Standaert TA; Truog WE
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Mar; 52(3):683-9. PubMed ID: 6279546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical evaluation of the alveolar amplitude response technique.
    Gavaghan DJ; Hahn CE
    Respir Physiol; 1995 Oct; 102(1):105-20. PubMed ID: 8610204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inspired sine-wave technique: A novel method to measure lung volume and ventilatory heterogeneity.
    Bruce RM; Phan PA; Pacpaco E; Rahman NM; Farmery AD
    Exp Physiol; 2018 May; 103(5):738-747. PubMed ID: 29460470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined parallel and series distribution model of inspired inert gases.
    Cruz JC
    Respir Physiol; 1991 Oct; 86(1):1-14. PubMed ID: 1661911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS; Davis K; Johannigman JA; Branson RD
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Series dead space for inert gases in healthy subjects.
    Guenard H; Manier G; Castaing Y; Varene N
    Pflugers Arch; 1985 Apr; 403(4):384-7. PubMed ID: 2989765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized method for controlling end-tidal respiratory gases during nonsteady physiological conditions.
    O'Connor SM; Wong JD; Donelan JM
    J Appl Physiol (1985); 2016 Dec; 121(6):1363-1378. PubMed ID: 27633735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penetration of inhaled He and SF6 into alveolar space at low tidal volumes.
    Worth H; Adaro F; Piiper J
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Sep; 43(3):403-8. PubMed ID: 199565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrapulmonary gas mixing and dead space in artificially ventilated dogs.
    Schrikker AC; Wesenhagen H; Luijendijk SC
    Pflugers Arch; 1995 Sep; 430(5):862-70. PubMed ID: 7478944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusivity, respiratory rate and tidal volume influence inert gas expirograms.
    Neufeld GR; Gobran S; Baumgardner JE; Aukburg SJ; Schreiner M; Scherer PW
    Respir Physiol; 1991 Apr; 84(1):31-47. PubMed ID: 1852988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.