These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 8972782)
1. Side effects of high-energy shockwaves in the human kidney: first experience with model comparing two shockwave sources. Roessler W; Wieland WF; Steinbach P; Hofstaedter F; Thüroff S; Chaussy C J Endourol; 1996 Dec; 10(6):507-11. PubMed ID: 8972782 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of shockwave action in the human kidney. Roessler W; Steinbach P; Seitz R; Hofstaedter F; Wieland WF J Endourol; 1995 Dec; 9(6):443-8. PubMed ID: 8775071 [TBL] [Abstract][Full Text] [Related]
3. Treatment of human renal cell carcinoma with high-energy shock waves--a new in vivo/in vitro model. Roessler W; Rothgangel B; Hofstaedter F; Wieland WF Urol Int; 1995; 55(1):1-5. PubMed ID: 7571174 [TBL] [Abstract][Full Text] [Related]
4. Effects of high-energy shock waves on the viable human kidney. Roessler W; Steinbach P; Nicolai H; Hofstaedter F; Wieland WF Urol Res; 1993; 21(4):273-7. PubMed ID: 8212416 [TBL] [Abstract][Full Text] [Related]
5. Histomorphologic and ultrastructural findings of shockwave-induced lesions in the isolated perfused kidney of the pig. Back W; Köhrmann KU; Bensemann J; Rassweiler J; Alken P J Endourol; 1994 Aug; 8(4):257-61. PubMed ID: 7981734 [TBL] [Abstract][Full Text] [Related]
7. Stone recurrence after shockwave lithotripsy: possible enhanced crystal deposition in traumatized tissue in rabbit model. Sarica K; Soygür T; Yaman O; Ozer G; Sayin N; Akbay C; Küpeli S; Yaman LS J Endourol; 1996 Dec; 10(6):513-7. PubMed ID: 8972783 [TBL] [Abstract][Full Text] [Related]
8. The isolated perfused kidney: an in vitro test system for evaluation of renal tissue damage induced by high-energy shockwaves sources. Bergsdorf T; Thüroff S; Chaussy Ch J Endourol; 2005 Sep; 19(7):883-8. PubMed ID: 16190851 [TBL] [Abstract][Full Text] [Related]
9. Astragalus membranaceus reduces free radical-mediated injury to renal tubules in rabbits receiving high-energy shock waves. Sheng BW; Chen XF; Zhao J; He DL; Nan XY Chin Med J (Engl); 2005 Jan; 118(1):43-9. PubMed ID: 15642225 [TBL] [Abstract][Full Text] [Related]
10. [Urinary excretion of N-acetyl-glucosaminidase after extracorporeal shockwave lithotripsy: a marker of renal tubule injury]. Trinchieri A; Zanetti G; Tombolini P; Ruoppolo M; Montanari E; Mazza L; Tura M Arch Ital Urol Nefrol Androl; 1989 Dec; 61(4):407-11. PubMed ID: 2532405 [TBL] [Abstract][Full Text] [Related]
11. Out-of-focus low pressure pulse pretreatment to the whole kidney to reduce renal injury during shockwave lithotripsy: an in vivo study using a rabbit model. Fernández F; Domínguez A; Castaño E; Loske AM J Endourol; 2013 Jun; 27(6):774-82. PubMed ID: 23373987 [TBL] [Abstract][Full Text] [Related]
12. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871 [TBL] [Abstract][Full Text] [Related]
14. Radiofrequency interstitial tumor ablation (RITA) is a possible new modality for treatment of renal cancer: ex vivo and in vivo experience. Zlotta AR; Wildschutz T; Raviv G; Peny MO; van Gansbeke D; Noel JC; Schulman CC J Endourol; 1997 Aug; 11(4):251-8. PubMed ID: 9376843 [TBL] [Abstract][Full Text] [Related]
15. Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. Willis LR; Evan AP; Connors BA; Handa RK; Blomgren PM; Lingeman JE J Am Soc Nephrol; 2006 Mar; 17(3):663-73. PubMed ID: 16452495 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of heat shock protein 70 expression in renal parenchyma subjected to shockwave lithotripsy. Sarica K; Sari I; Erbagci A; Yagci F; Yurtseven C; Karakok M J Endourol; 2003 Nov; 17(9):805-8. PubMed ID: 14642048 [TBL] [Abstract][Full Text] [Related]
17. Efficacy of the Duet lithotripter using two energy sources for stone fragmentation by shockwaves: an in vitro study. Greenstein A; Sofer M; Matzkin H J Endourol; 2004 Dec; 18(10):942-5. PubMed ID: 15801358 [TBL] [Abstract][Full Text] [Related]
18. Experimental basis of shockwave-induced renal trauma in the model of the canine kidney. Rassweiler J; Köhrmann KU; Back W; Fröhner S; Raab M; Weber A; Kahmann F; Marlinghaus E; Jünemann KP; Alken P World J Urol; 1993; 11(1):43-53. PubMed ID: 8490667 [TBL] [Abstract][Full Text] [Related]
19. Functional and oncological outcomes of partial nephrectomy of solitary kidneys. La Rochelle J; Shuch B; Riggs S; Liang LJ; Saadat A; Kabbinavar F; Pantuck A; Belldegrun A J Urol; 2009 May; 181(5):2037-42; discussion 2043. PubMed ID: 19298974 [TBL] [Abstract][Full Text] [Related]
20. Limitation of shockwave-induced enhanced crystal deposition in traumatized tissue by verapamil in rabbit model. Sarica K; Bakir K; Yağci F; Topçu O; Akbay C; Sayin N; Korkmaz C J Endourol; 1999 Jun; 13(5):343-7. PubMed ID: 10446793 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]