These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8972873)

  • 1. Directional random oligonucleotide primed (DROP) global amplification of cDNA: its application to subtractive cDNA cloning.
    Hampson IN; Hampson L; Dexter TM
    Nucleic Acids Res; 1996 Dec; 24(23):4832-5. PubMed ID: 8972873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global amplification of cDNA from limiting amounts of tissue. An improved method for gene cloning and analysis.
    Reddy MK; Nair S; Sopory SK
    Mol Biotechnol; 2002 Nov; 22(3):223-30. PubMed ID: 12448877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid and simple PCR-based method for isolation of cDNAs from differentially expressed genes.
    Sokolov BP; Prockop DJ
    Nucleic Acids Res; 1994 Sep; 22(19):4009-15. PubMed ID: 7524031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of primary and subtracted cDNA libraries from early embryos.
    Rothstein JL; Johnson D; Jessee J; Skowronski J; DeLoia JA; Solter D; Knowles BB
    Methods Enzymol; 1993; 225():587-610. PubMed ID: 7694045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A global single-cell cDNA amplification method for quantitative microarray analysis.
    Kurimoto K; Saitou M
    Methods Mol Biol; 2011; 687():91-111. PubMed ID: 20967603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application for PCR technology to subtractive cDNA cloning: identification of genes expressed specifically in murine plasmacytoma cells.
    Timblin C; Battey J; Kuehl WM
    Nucleic Acids Res; 1990 Mar; 18(6):1587-93. PubMed ID: 2326198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential subtraction display: a unified approach for isolation of cDNAs from differentially expressed genes.
    Pardinas JR; Combates NJ; Prouty SM; Stenn KS; Parimoo S
    Anal Biochem; 1998 Mar; 257(2):161-8. PubMed ID: 9514785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple, directional cDNA cloning for in situ transcript hybridization screens.
    Tamme R; Mills K; Rainbird B; Nornes S; Lardelli M
    Biotechniques; 2001 Oct; 31(4):938-42, 944, 946. PubMed ID: 11680725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mRNA/cDNA library construction using RNA-polymerase cycling reaction.
    Lin SL; Ying SY
    Methods Mol Biol; 2003; 221():129-43. PubMed ID: 12703739
    [No Abstract]   [Full Text] [Related]  

  • 10. Full-length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated cDNA.
    Chenchik A; Diachenko L; Moqadam F; Tarabykin V; Lukyanov S; Siebert PD
    Biotechniques; 1996 Sep; 21(3):526-34. PubMed ID: 8879595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of infectious clones for RNA viruses: TMV.
    Chapman SN
    Methods Mol Biol; 2008; 451():477-90. PubMed ID: 18370275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR-based subtractive cDNA cloning.
    Patel M; Sive H
    Curr Protoc Mol Biol; 2001 Aug; Chapter 25():Unit 25B.2. PubMed ID: 18265215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modified cDNA subtraction to identify differentially expressed genes from plants with universal application to other eukaryotes.
    Mishra RN; Ramesha A; Kaul T; Nair S; Sopory SK; Reddy MK
    Anal Biochem; 2005 Oct; 345(1):149-57. PubMed ID: 16137632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and characterization of an infectious cDNA clone of enterovirus 71: a rapid method for rescuing infectious virus based on stable cells expressing T7 polymerase.
    Fu M; Bai J; Gao S; Chang Z; Zhou X; Long JE
    Arch Virol; 2021 Feb; 166(2):627-632. PubMed ID: 33423081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCR-based method for isolation of full-length clones and splice variants from cDNA libraries.
    Alphey L
    Biotechniques; 1997 Mar; 22(3):481-4, 486. PubMed ID: 9067026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse polymerase chain reaction. An efficient approach to cloning cDNA ends.
    Huang SH
    Mol Biotechnol; 1994 Aug; 2(1):15-22. PubMed ID: 7866865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of differentially amplified cDNA products from RNA arbitrarily primed PCR fingerprints using single strand conformation polymorphism (SSCP) gels.
    Mathieu-Daudé F; Cheng R; Welsh J; McClelland M
    Nucleic Acids Res; 1996 Apr; 24(8):1504-7. PubMed ID: 8628684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of suppression subtractive hybridization cDNA library of half-blood males of Dermacentor silvarum and analysis of differentially expressed genes].
    Liu Q; Wang WL; Meng QF; Xu Z; Cui J; Liu XX; Wang WL
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2014 Aug; 32(4):274-9. PubMed ID: 25518590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single-plasmid reverse genetics system for the rescue of non-segmented negative-strand RNA viruses from cloned full-length cDNA.
    Peeters B; de Leeuw O
    J Virol Methods; 2017 Oct; 248():187-190. PubMed ID: 28743584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplification of cDNA ends using PCR suppression effect and step-out PCR.
    Matz MV; Alieva NO; Chenchik A; Lukyanov S
    Methods Mol Biol; 2003; 221():41-9. PubMed ID: 12703732
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.