These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 8973190)
1. Substrate specificity and identification of functional groups of homoserine kinase from Escherichia coli. Huo X; Viola RE Biochemistry; 1996 Dec; 35(50):16180-5. PubMed ID: 8973190 [TBL] [Abstract][Full Text] [Related]
2. Functional group characterization of homoserine kinase from Escherichia coli. Huo X; Viola RE Arch Biochem Biophys; 1996 Jun; 330(2):373-9. PubMed ID: 8660667 [TBL] [Abstract][Full Text] [Related]
3. Identification of the gene encoding homoserine kinase from Arabidopsis thaliana and characterization of the recombinant enzyme derived from the gene. Lee M; Leustek T Arch Biochem Biophys; 1999 Dec; 372(1):135-42. PubMed ID: 10562426 [TBL] [Abstract][Full Text] [Related]
4. Specificity of aspartokinase III from Escherichia coli and an examination of important catalytic residues. Keng YF; Viola RE Arch Biochem Biophys; 1996 Nov; 335(1):73-81. PubMed ID: 8914836 [TBL] [Abstract][Full Text] [Related]
5. Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase. Coe DM; Viola RE Arch Biochem Biophys; 2007 May; 461(2):211-8. PubMed ID: 17442255 [TBL] [Abstract][Full Text] [Related]
6. Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli. Grueninger D; Schulz GE J Mol Biol; 2006 Jun; 359(3):787-97. PubMed ID: 16674975 [TBL] [Abstract][Full Text] [Related]
7. Functional studies of active-site mutants from Drosophila melanogaster deoxyribonucleoside kinase. Investigations of the putative catalytic glutamate-arginine pair and of residues responsible for substrate specificity. Egeblad-Welin L; Sonntag Y; Eklund H; Munch-Petersen B FEBS J; 2007 Mar; 274(6):1542-51. PubMed ID: 17302737 [TBL] [Abstract][Full Text] [Related]
8. [Determination of homoserine kinase activity by chromatographic separation and measurement of reaction products]. Gening LV; Andreeva NB; Gazarian TG; Khromov IS; Gazarian KG Biokhimiia; 1994 Aug; 59(8):1238-44. PubMed ID: 7819407 [TBL] [Abstract][Full Text] [Related]
9. Archaeal shikimate kinase, a new member of the GHMP-kinase family. Daugherty M; Vonstein V; Overbeek R; Osterman A J Bacteriol; 2001 Jan; 183(1):292-300. PubMed ID: 11114929 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of human nicotinamide riboside kinase. Khan JA; Xiang S; Tong L Structure; 2007 Aug; 15(8):1005-13. PubMed ID: 17698003 [TBL] [Abstract][Full Text] [Related]
11. Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase. Ziegler K; Noble SM; Mutumanje E; Bishop B; Huddler DP; Born TL Biochemistry; 2007 Mar; 46(10):2674-83. PubMed ID: 17302437 [TBL] [Abstract][Full Text] [Related]
12. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity. Johnson AR; Dekker EE Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838 [TBL] [Abstract][Full Text] [Related]
13. Regulation of aspartate-derived amino acid homeostasis in potato plants (Solanum tuberosum L.) by expression of E. coli homoserine kinase. Rinder J; Casazza AP; Hoefgen R; Hesse H Amino Acids; 2008 Feb; 34(2):213-22. PubMed ID: 17624493 [TBL] [Abstract][Full Text] [Related]
14. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
15. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography. Kraft L; Sprenger GA; Lindqvist Y J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802 [TBL] [Abstract][Full Text] [Related]
16. Roles and microenvironments of tryptophanyl residues of spinach phosphoribulokinase. Brandes HK; Larimer FW; Lu TY; Dey J; Hartman FC Arch Biochem Biophys; 1998 Apr; 352(1):130-6. PubMed ID: 9521825 [TBL] [Abstract][Full Text] [Related]
17. Structure of Thermus thermophilus 2-Keto-3-deoxygluconate kinase: evidence for recognition of an open chain substrate. Ohshima N; Inagaki E; Yasuike K; Takio K; Tahirov TH J Mol Biol; 2004 Jul; 340(3):477-89. PubMed ID: 15210349 [TBL] [Abstract][Full Text] [Related]
18. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases. Tanaka K; Suzuki T FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979 [TBL] [Abstract][Full Text] [Related]
19. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176 [TBL] [Abstract][Full Text] [Related]
20. Catalytic and structural importance of Gly-454, Tyr-455, and Leu-456 in the carboxy-terminal region of Escherichia coli F1-ATPase alpha subunit. Yabuki M; Nagakura T; Moritani C; Kanazawa H Arch Biochem Biophys; 1997 Feb; 338(1):104-10. PubMed ID: 9015394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]