BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8973190)

  • 1. Substrate specificity and identification of functional groups of homoserine kinase from Escherichia coli.
    Huo X; Viola RE
    Biochemistry; 1996 Dec; 35(50):16180-5. PubMed ID: 8973190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional group characterization of homoserine kinase from Escherichia coli.
    Huo X; Viola RE
    Arch Biochem Biophys; 1996 Jun; 330(2):373-9. PubMed ID: 8660667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the gene encoding homoserine kinase from Arabidopsis thaliana and characterization of the recombinant enzyme derived from the gene.
    Lee M; Leustek T
    Arch Biochem Biophys; 1999 Dec; 372(1):135-42. PubMed ID: 10562426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of aspartokinase III from Escherichia coli and an examination of important catalytic residues.
    Keng YF; Viola RE
    Arch Biochem Biophys; 1996 Nov; 335(1):73-81. PubMed ID: 8914836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the roles of essential functional groups in the mechanism of homoserine succinyltransferase.
    Coe DM; Viola RE
    Arch Biochem Biophys; 2007 May; 461(2):211-8. PubMed ID: 17442255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli.
    Grueninger D; Schulz GE
    J Mol Biol; 2006 Jun; 359(3):787-97. PubMed ID: 16674975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional studies of active-site mutants from Drosophila melanogaster deoxyribonucleoside kinase. Investigations of the putative catalytic glutamate-arginine pair and of residues responsible for substrate specificity.
    Egeblad-Welin L; Sonntag Y; Eklund H; Munch-Petersen B
    FEBS J; 2007 Mar; 274(6):1542-51. PubMed ID: 17302737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Determination of homoserine kinase activity by chromatographic separation and measurement of reaction products].
    Gening LV; Andreeva NB; Gazarian TG; Khromov IS; Gazarian KG
    Biokhimiia; 1994 Aug; 59(8):1238-44. PubMed ID: 7819407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal shikimate kinase, a new member of the GHMP-kinase family.
    Daugherty M; Vonstein V; Overbeek R; Osterman A
    J Bacteriol; 2001 Jan; 183(1):292-300. PubMed ID: 11114929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of human nicotinamide riboside kinase.
    Khan JA; Xiang S; Tong L
    Structure; 2007 Aug; 15(8):1005-13. PubMed ID: 17698003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine transsuccinylase.
    Ziegler K; Noble SM; Mutumanje E; Bishop B; Huddler DP; Born TL
    Biochemistry; 2007 Mar; 46(10):2674-83. PubMed ID: 17302437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of aspartate-derived amino acid homeostasis in potato plants (Solanum tuberosum L.) by expression of E. coli homoserine kinase.
    Rinder J; Casazza AP; Hoefgen R; Hesse H
    Amino Acids; 2008 Feb; 34(2):213-22. PubMed ID: 17624493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography.
    Kraft L; Sprenger GA; Lindqvist Y
    J Mol Biol; 2002 May; 318(4):1057-69. PubMed ID: 12054802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles and microenvironments of tryptophanyl residues of spinach phosphoribulokinase.
    Brandes HK; Larimer FW; Lu TY; Dey J; Hartman FC
    Arch Biochem Biophys; 1998 Apr; 352(1):130-6. PubMed ID: 9521825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Thermus thermophilus 2-Keto-3-deoxygluconate kinase: evidence for recognition of an open chain substrate.
    Ohshima N; Inagaki E; Yasuike K; Takio K; Tahirov TH
    J Mol Biol; 2004 Jul; 340(3):477-89. PubMed ID: 15210349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z
    Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic and structural importance of Gly-454, Tyr-455, and Leu-456 in the carboxy-terminal region of Escherichia coli F1-ATPase alpha subunit.
    Yabuki M; Nagakura T; Moritani C; Kanazawa H
    Arch Biochem Biophys; 1997 Feb; 338(1):104-10. PubMed ID: 9015394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.