These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8973208)

  • 1. Scanning calorimetry and Fourier-transform infrared studies into the thermal stability of cleaved bacteriorhodopsin systems.
    Azuaga AI; Sepulcre F; Padrós E; Mateo PL
    Biochemistry; 1996 Dec; 35(50):16328-35. PubMed ID: 8973208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational study of globulin from common buckwheat (Fagopyrum esculentum Moench) by Fourier transform infrared spectroscopy and differential scanning calorimetry.
    Choi SM; Ma CY
    J Agric Food Chem; 2005 Oct; 53(20):8046-53. PubMed ID: 16190669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential scanning calorimetric, circular dichroism, and Fourier transform infrared spectroscopic characterization of the thermal unfolding of xylanase A from Streptomyces lividans.
    Roberge M; Lewis RN; Shareck F; Morosoli R; Kluepfel D; Dupont C; McElhaney RN
    Proteins; 2003 Feb; 50(2):341-54. PubMed ID: 12486727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical compression affecting the thermal-induced conformational stability and denaturation temperature of human fibrinogen.
    Lin SY; Hsieh TF; Wei YS; Li MJ
    Int J Biol Macromol; 2005 Nov; 37(3):127-33. PubMed ID: 16257049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of a two-stage thermal denaturation process in lysozyme: a Raman scattering and differential scanning calorimetry investigation.
    Hédoux A; Ionov R; Willart JF; Lerbret A; Affouard F; Guinet Y; Descamps M; Prévost D; Paccou L; Danéde F
    J Chem Phys; 2006 Jan; 124(1):14703. PubMed ID: 16409047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in the core structure of bacteriorhodopsin.
    Kluge T; Olejnik J; Smilowitz L; Rothschild KJ
    Biochemistry; 1998 Jul; 37(28):10279-85. PubMed ID: 9665736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of dehydrophenylalanine-containing model peptides as probed by infrared spectroscopy: a case study of an alpha-helical and a 3(10)-helical peptide.
    Gupta A; Mehrotra R; Klimov E; Siesler HW; Joshi RM; Chauhan VS
    Chem Biodivers; 2006 Mar; 3(3):284-95. PubMed ID: 17193265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry.
    Miles CA; Burjanadze TV; Bailey AJ
    J Mol Biol; 1995 Jan; 245(4):437-46. PubMed ID: 7837274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin.
    Kahn TW; Sturtevant JM; Engelman DM
    Biochemistry; 1992 Sep; 31(37):8829-39. PubMed ID: 1390670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of protein conformational stability and integrity using calorimetry and FT-Raman spectroscopy correlated with enzymatic activity.
    Elkordy AA; Forbes RT; Barry BW
    Eur J Pharm Sci; 2008 Feb; 33(2):177-90. PubMed ID: 18207710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of protein conformation change from alpha(II) to alpha(I) on the bacteriorhodopsin photocycle.
    Wang J; El-Sayed MA
    Biophys J; 2000 Apr; 78(4):2031-6. PubMed ID: 10733981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal denaturation of spinach plastocyanin: effect of copper site oxidation state and molecular oxygen.
    Sandberg A; Harrison DJ; Karlsson BG
    Biochemistry; 2003 Sep; 42(34):10301-10. PubMed ID: 12939160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin.
    Shibata M; Kandori H
    Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helical and reverse turn changes in the BR->N transition of bacteriorhodopsin.
    Lazarova T; Padrós E
    Biochemistry; 1996 Jun; 35(25):8354-8. PubMed ID: 8679593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy.
    Lórenz-Fonfría VA; Furutani Y; Kandori H
    Biochemistry; 2008 Apr; 47(13):4071-81. PubMed ID: 18321068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of bacteriorhodopsin thermal unfolding.
    Brouillette CG; Muccio DD; Finney TK
    Biochemistry; 1987 Nov; 26(23):7431-8. PubMed ID: 3427085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of succinylation on the structure and thermostability of lysozyme.
    van der Veen M; Norde W; Stuart MC
    J Agric Food Chem; 2005 Jul; 53(14):5702-7. PubMed ID: 15998136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bacteriorhodopsin carboxyl-terminus contributes to proton recruitment and protein stability.
    Turner GJ; Chittiboyina S; Pohren L; Hines KG; Correia JJ; Mitchell DC
    Biochemistry; 2009 Feb; 48(5):1112-22. PubMed ID: 19140737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy.
    Murayama K; Tomida M
    Biochemistry; 2004 Sep; 43(36):11526-32. PubMed ID: 15350138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric investigation of the NABH4-modified bacteriorhodopsin in purple membrane from Halobacterium halobium.
    Shnyrov VL
    Biochem Mol Biol Int; 1994 Sep; 34(2):281-6. PubMed ID: 7849638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.