These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8973367)
1. Genomic organization of the rat aspartyl-tRNA synthetase gene family: a single active gene and several retropseudogenes. Lazard M; Agou F; Cavarelli J; Latreille MT; Moras D; Mirande M Gene; 1996 Nov; 180(1-2):197-205. PubMed ID: 8973367 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning and primary structure of cDNA encoding the catalytic domain of rat liver aspartyl-tRNA synthetase. Mirande M; Waller JP J Biol Chem; 1989 Jan; 264(2):842-7. PubMed ID: 2642907 [TBL] [Abstract][Full Text] [Related]
3. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Chuawong P; Hendrickson TL Biochemistry; 2006 Jul; 45(26):8079-87. PubMed ID: 16800632 [TBL] [Abstract][Full Text] [Related]
4. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455 [TBL] [Abstract][Full Text] [Related]
5. Sequence, overproduction and crystallization of aspartyl-tRNA synthetase from Thermus thermophilus. Implications for the structure of prokaryotic aspartyl-tRNA synthetases. Poterszman A; Plateau P; Moras D; Blanquet S; Mazauric MH; Kreutzer R; Kern D FEBS Lett; 1993 Jul; 325(3):183-6. PubMed ID: 8319804 [TBL] [Abstract][Full Text] [Related]
6. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA. Ryckelynck M; Masquida B; Giegé R; Frugier M J Mol Biol; 2005 Dec; 354(3):614-29. PubMed ID: 16257416 [TBL] [Abstract][Full Text] [Related]
7. Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain. Charron C; Roy H; Blaise M; Giegé R; Kern D EMBO J; 2003 Apr; 22(7):1632-43. PubMed ID: 12660169 [TBL] [Abstract][Full Text] [Related]
8. Genomic structure of the rat major AP endonuclease gene (Apex) with an adjacent putative O-sialoglycoprotease gene (Prsmg1/Gcpl1) and a processed Apex pseudogene (Apexp1). Yao M; Akiyama K; Tan Y; Sarker AH; Ikeda S; Alam SS; Tsutsui K; Yoshida MC; Seki S Acta Med Okayama; 1999 Dec; 53(6):245-52. PubMed ID: 10631378 [TBL] [Abstract][Full Text] [Related]
9. Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn. Bernard D; Akochy PM; Beaulieu D; Lapointe J; Roy PH J Bacteriol; 2006 Jan; 188(1):269-74. PubMed ID: 16352843 [TBL] [Abstract][Full Text] [Related]
10. Single amino acid changes in AspRS reveal alternative routes for expanding its tRNA repertoire in vivo. Martin F; Barends S; Eriani G Nucleic Acids Res; 2004; 32(13):4081-9. PubMed ID: 15289581 [TBL] [Abstract][Full Text] [Related]
11. Structure of the nondiscriminating aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7 reveals the recognition mechanism for two different tRNA anticodons. Sato Y; Maeda Y; Shimizu S; Hossain MT; Ubukata S; Suzuki K; Sekiguchi T; Takénaka A Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1042-7. PubMed ID: 17881821 [TBL] [Abstract][Full Text] [Related]
12. Genomic organization, cDNA sequence, bacterial expression, and purification of human seryl-tRNA synthase. Vincent C; Tarbouriech N; Härtlein M Eur J Biochem; 1997 Nov; 250(1):77-84. PubMed ID: 9431993 [TBL] [Abstract][Full Text] [Related]
13. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Cavarelli J; Rees B; Ruff M; Thierry JC; Moras D Nature; 1993 Mar; 362(6416):181-4. PubMed ID: 8450889 [TBL] [Abstract][Full Text] [Related]
14. Identification of three human pseudogenes for subunit VIb of cytochrome c oxidase: a molecular record of gene evolution. Taanman JW; Schrage C; Reuvekamp P; Bijl J; Hartog M; de Vries H; Agsteribbe E Gene; 1991 Jun; 102(2):237-44. PubMed ID: 1651884 [TBL] [Abstract][Full Text] [Related]
15. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change. Feng L; Tumbula-Hansen D; Toogood H; Soll D Proc Natl Acad Sci U S A; 2003 May; 100(10):5676-81. PubMed ID: 12730374 [TBL] [Abstract][Full Text] [Related]
16. Human Zn-alpha 2-glycoprotein: complete genomic sequence, identification of a related pseudogene and relationship to class I major histocompatibility complex genes. Freije JP; Fueyo A; Uría JA; Velasco G; Sánchez LM; López-Boado YS; López-Otín C Genomics; 1993 Dec; 18(3):575-87. PubMed ID: 8307568 [TBL] [Abstract][Full Text] [Related]
17. Released selective pressure on a structural domain gives new insights on the functional relaxation of mitochondrial aspartyl-tRNA synthetase. Schwenzer H; Scheper GC; Zorn N; Moulinier L; Gaudry A; Leize E; Martin F; Florentz C; Poch O; Sissler M Biochimie; 2014 May; 100():18-26. PubMed ID: 24120687 [TBL] [Abstract][Full Text] [Related]
18. Structure and organization of the human alpha class glutathione S-transferase genes and related pseudogenes. Suzuki T; Johnston PN; Board PG Genomics; 1993 Dec; 18(3):680-6. PubMed ID: 8307579 [TBL] [Abstract][Full Text] [Related]
19. Organization of a human UDP-GalNAc:polypeptide, N-acetylgalactosaminyltransferase gene and a related processed pseudogene. Meurer JA; Drong RF; Homa FL; Slightom JL; Elhammer AP Glycobiology; 1996 Mar; 6(2):231-41. PubMed ID: 8727794 [TBL] [Abstract][Full Text] [Related]
20. Structure of the human genomic region homologous to the bovine prochymosin-encoding gene. Ord T; Kolmer M; Villems R; Saarma M Gene; 1990 Jul; 91(2):241-6. PubMed ID: 2210384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]