BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 8973812)

  • 1. Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings.
    Wrenn CC; Picklo MJ; Lappi DA; Robertson D; Wiley RG
    Brain Res; 1996 Nov; 740(1-2):175-84. PubMed ID: 8973812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-Thy-1 immunotoxin, OX7-saporin, destroys cerebellar Purkinje cells after intraventricular injection in rats.
    Davis TL; Wiley RG
    Brain Res; 1989 Dec; 504(2):216-22. PubMed ID: 2574621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral and neurobiological alterations induced by the immunotoxin 192-IgG-saporin: cholinergic and non-cholinergic effects following i.c.v. injection.
    Walsh TJ; Kelly RM; Dougherty KD; Stackman RW; Wiley RG; Kutscher CL
    Brain Res; 1995 Dec; 702(1-2):233-45. PubMed ID: 8846082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destruction of midbrain dopaminergic neurons by using immunotoxin to dopamine transporter.
    Wiley RG; Harrison MB; Levey AI; Lappi DA
    Cell Mol Neurobiol; 2003 Oct; 23(4-5):839-50. PubMed ID: 14514035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noradrenergic lesioning with an anti-dopamine beta-hydroxylase immunotoxin.
    Picklo MJ; Wiley RG; Lappi DA; Robertson D
    Brain Res; 1994 Dec; 666(2):195-200. PubMed ID: 7882029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting toxins to neural antigens and receptors.
    Wiley RG
    Semin Cancer Biol; 1996 Apr; 7(2):71-7. PubMed ID: 8740562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal lesioning with axonally transported toxins.
    Wiley RG; Kline IV RH
    J Neurosci Methods; 2000 Nov; 103(1):73-82. PubMed ID: 11074097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective lesion of the developing central noradrenergic system: short- and long-term effects and reinnervation by noradrenergic-rich tissue grafts.
    Coradazzi M; Gulino R; Garozzo S; Leanza G
    J Neurochem; 2010 Aug; 114(3):761-71. PubMed ID: 20477936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronotoxic effects of monoclonal anti-Thy 1 antibody (OX7) coupled to the ribosome inactivating protein, saporin, as studied by suicide transport experiments in the rat.
    Wiley RG; Stirpe F; Thorpe P; Oeltmann TN
    Brain Res; 1989 Dec; 505(1):44-54. PubMed ID: 2575436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: modeling the cholinergic degeneration of Alzheimer's disease.
    Wiley RG; Berbos TG; Deckwerth TL; Johnson EM; Lappi DA
    J Neurol Sci; 1995 Feb; 128(2):157-66. PubMed ID: 7738592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of neonatal lesions of the basal forebrain cholinergic system by 192 immunoglobulin G-saporin: biochemical, behavioural and morphological characterization.
    Leanza G; Nilsson OG; Nikkhah G; Wiley RG; Björklund A
    Neuroscience; 1996 Sep; 74(1):119-41. PubMed ID: 8843082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficit in selective and divided attention associated with cholinergic basal forebrain immunotoxic lesion produced by 192-saporin; motoric/sensory deficit associated with Purkinje cell immunotoxic lesion produced by OX7-saporin.
    Waite JJ; Wardlow ML; Power AE
    Neurobiol Learn Mem; 1999 May; 71(3):325-52. PubMed ID: 10196110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity of 192 IgG-saporin for NGF receptor-positive cholinergic basal forebrain neurons in the rat.
    Book AA; Wiley RG; Schweitzer JB
    Brain Res; 1992 Sep; 590(1-2):350-5. PubMed ID: 1358406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 192IgG-saporin immunotoxin-induced loss of cholinergic cells differentially activates microglia in rat basal forebrain nuclei.
    Rossner S; Härtig W; Schliebs R; Brückner G; Brauer K; Perez-Polo JR; Wiley RG; Bigl V
    J Neurosci Res; 1995 Jun; 41(3):335-46. PubMed ID: 7563226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat.
    Schreihofer AM; Stornetta RL; Guyenet PG
    J Physiol; 2000 Nov; 529 Pt 1(Pt 1):221-36. PubMed ID: 11080264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo.
    Thorpe PE; Brown AN; Bremner JA; Foxwell BM; Stirpe F
    J Natl Cancer Inst; 1985 Jul; 75(1):151-9. PubMed ID: 3859688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behavioral functions of the cholinergic basal forebrain: lessons from 192 IgG-saporin.
    Wrenn CC; Wiley RG
    Int J Dev Neurosci; 1998; 16(7-8):595-602. PubMed ID: 10198809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal noradrenergic activation mediates allodynia reduction from an allosteric adenosine modulator in a rat model of neuropathic pain.
    Li X; Conklin D; Ma W; Zhu X; Eisenach JC
    Pain; 2002 May; 97(1-2):117-25. PubMed ID: 12031785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic noradrenergic hyperinnervation does not functionally compensate for neonatal forebrain acetylcholine lesion.
    Pappas BA; Nguyen T; Brownlee B; Tanasoiu D; Fortin T; Sherren N
    Brain Res; 2000 Jun; 867(1-2):90-9. PubMed ID: 10837801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of effect of moderate Purkinje cell loss on working memory.
    Wrenn CC; Wiley RG
    Neuroscience; 2001; 107(3):433-45. PubMed ID: 11718998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.