BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8974448)

  • 1. Recognition of alternating oligopurine/oligopyrimidine tracts of DNA by oligonucleotides with base-to-base linkages.
    Zhou BW; Marchand C; Asseline U; Thuong NT; Sun JS; Garestier T; Hélène C
    Bioconjug Chem; 1995; 6(5):516-23. PubMed ID: 8974448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification of pyrimidine TFOs: effect on i-motif and triple helix formation.
    Lacroix L; Mergny JL
    Arch Biochem Biophys; 2000 Sep; 381(1):153-63. PubMed ID: 11019831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of alternate-strand triple helix formation at the 5'CpG3' and 5'GpC3' junction steps.
    Marchand C; Sun JS; Bailly C; Waring MJ; Garestier T; Hélène C
    Biochemistry; 1998 Sep; 37(38):13322-9. PubMed ID: 9748340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand.
    de Bizemont T; Duval-Valentin G; Sun JS; Bisagni E; Garestier T; Hélène C
    Nucleic Acids Res; 1996 Mar; 24(6):1136-43. PubMed ID: 8604349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New junction models for alternate-strand triple-helix formation.
    de Bizemont T; Sun JS; Garestier T; Hélène C
    Chem Biol; 1998 Dec; 5(12):755-62. PubMed ID: 9862797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and studies of modified oligonucleotides-directed triple helix formation at the purine-pyrimidine interrupted site.
    Jazouli M; Guianvarc'h D; Bougrin K; Soufiaoui M; Vierling P; Benhida R
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1277-80. PubMed ID: 14565398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides.
    Kukreti S; Sun JS; Garestier T; Hélène C
    Nucleic Acids Res; 1997 Nov; 25(21):4264-70. PubMed ID: 9336456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosides and nucleotides. Part 226: alternate-strand triple-helix formation by 3'-3'-linked oligodeoxynucleotides composed of asymmetrical sequences.
    Hoshika S; Ueno Y; Kamiya H; Matsuda A
    Bioorg Med Chem Lett; 2004 Jun; 14(12):3333-6. PubMed ID: 15149701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of alternate-strand triple helix formation at the 5"-TpA-3" and 5"-ApT-3" junctions.
    Brodin P; Sun JS; Mouscadet JF; Auclair C
    Nucleic Acids Res; 1999 Aug; 27(15):3029-34. PubMed ID: 10454596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate strand recognition.
    Jayasena SD; Johnston BH
    Nucleic Acids Res; 1992 Oct; 20(20):5279-88. PubMed ID: 1437547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines.
    Gowers DM; Fox KR
    Nucleic Acids Res; 1997 Oct; 25(19):3787-94. PubMed ID: 9380499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple helices formed at oligopyrimidine*oligopurine sequences with base pair inversions: effect of a triplex-specific ligand on stability and selectivity.
    Kukreti S; Sun JS; Loakes D; Brown DM; Nguyen CH; Bisagni E; Garestier T; Helene C
    Nucleic Acids Res; 1998 May; 26(9):2179-83. PubMed ID: 9547278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex-forming oligonucleotides at physiological pH.
    Rusling DA; Le Strat L; Powers VE; Broughton-Head VJ; Booth J; Lack O; Brown T; Fox KR
    FEBS Lett; 2005 Dec; 579(29):6616-20. PubMed ID: 16293248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligonucleotide clamps arrest DNA synthesis on a single-stranded DNA target.
    Giovannangeli C; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10013-7. PubMed ID: 8234249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Padlock oligonucleotides for duplex DNA based on sequence-specific triple helix formation.
    Escudé C; Garestier T; Hélène C
    Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10603-7. PubMed ID: 10485872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu.PuPy and Py.PuPy base triplets.
    Jayasena SD; Johnston BH
    Biochemistry; 1992 Jan; 31(2):320-7. PubMed ID: 1731890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring cellular activity of locked nucleic acid-modified triplex-forming oligonucleotides and defining its molecular basis.
    Brunet E; Alberti P; Perrouault L; Babu R; Wengel J; Giovannangeli C
    J Biol Chem; 2005 May; 280(20):20076-85. PubMed ID: 15760901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosides and nucleotides. 218. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides using a purine motif.
    Hoshika S; Ueno Y; Matsuda A
    Bioconjug Chem; 2003; 14(3):607-13. PubMed ID: 12757386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior.
    Manzini G; Xodo LE; Gasparotto D; Quadrifoglio F; van der Marel GA; van Boom JH
    J Mol Biol; 1990 Jun; 213(4):833-43. PubMed ID: 2359124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.