These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8974651)

  • 1. A sensitive microassay reveals marked regional differences in the capacity of rat brain to generate carbon monoxide.
    Laitinen JT; Juvonen RO
    Brain Res; 1995 Oct; 694(1-2):246-52. PubMed ID: 8974651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of heme oxygenase and consequent carbon monoxide formation inhibits the release of arginine vasopressin from rat hypothalamic explants. Molecular linkage between heme catabolism and neuroendocrine function.
    Mancuso C; Kostoglou-Athanassiou I; Forsling ML; Grossman AB; Preziosi P; Navarra P; Minotti G
    Brain Res Mol Brain Res; 1997 Oct; 50(1-2):267-76. PubMed ID: 9406943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histochemical localization of heme oxygenase-2 protein and mRNA expression in rat brain.
    Ewing JF; Maines MD
    Brain Res Brain Res Protoc; 1997 May; 1(2):165-74. PubMed ID: 9385081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methene bridge carbon atom elimination in oxidative heme degradation catalyzed by heme oxygenase and NADPH-cytochrome P-450 reductase.
    Docherty JC; Firneisz GD; Schacter BA
    Arch Biochem Biophys; 1984 Dec; 235(2):657-64. PubMed ID: 6440489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system.
    Yoshida T; Noguchi M; Kikuchi G
    J Biol Chem; 1982 Aug; 257(16):9345-8. PubMed ID: 6809736
    [No Abstract]   [Full Text] [Related]  

  • 6. A microassay for heme oxygenase activity using thin-layer chromatography.
    Sierra EE; Nutter LM
    Anal Biochem; 1992 Jan; 200(1):27-30. PubMed ID: 1595897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structure and mechanism of heme oxygenase].
    Sakamoto H; Sugishima M; Higashimoto Y; Fukuyama K; Noguchi M
    Seikagaku; 2005 Jul; 77(7):634-8. PubMed ID: 16114846
    [No Abstract]   [Full Text] [Related]  

  • 8. Overview of heme degradation pathway.
    Maines MD
    Curr Protoc Toxicol; 2001 May; Chapter 9():Unit 9.1. PubMed ID: 23045067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tin-protoporphyrin-mediated disruption in vivo of heme oxygenase-2 protein integrity and activity in rat brain.
    Mark JA; Maines MD
    Pediatr Res; 1992 Sep; 32(3):324-9. PubMed ID: 1408470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon monoxide: a putative neural messenger.
    Verma A; Hirsch DJ; Glatt CE; Ronnett GV; Snyder SH
    Science; 1993 Jan; 259(5093):381-4. PubMed ID: 7678352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme catabolism in cultured hepatocytes: evidence that heme oxygenase is the predominant pathway and that a proportion of synthesized heme is converted rapidly to biliverdin.
    Lincoln BC; Aw TY; Bonkovsky HL
    Biochim Biophys Acta; 1989 Jul; 992(1):49-58. PubMed ID: 2752038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunocytochemical localization of heme oxygenase-2 in the rat cerebellum.
    Yamanaka M; Yamabe K; Saitoh Y; Katoh-Semba R; Semba R
    Neurosci Res; 1996 Mar; 24(4):403-7. PubMed ID: 8861110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of heme oxygenase activity by measurement of CO.
    Vreman HJ; Stevenson DK
    Curr Protoc Toxicol; 2001 May; Chapter 9():Unit 9.2. PubMed ID: 23045068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon monoxide-mediated alterations in paracellular permeability and vesicular transport in acetaminophen-treated perfused rat liver.
    Mori M; Suematsu M; Kyokane T; Sano T; Suzuki H; Yamaguchi T; Ishimura Y; Ishii H
    Hepatology; 1999 Jul; 30(1):160-8. PubMed ID: 10385652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New physiological importance of two classic residual products: carbon monoxide and bilirubin.
    Marilena G
    Biochem Mol Med; 1997 Aug; 61(2):136-42. PubMed ID: 9259978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of gonadotrophin-releasing hormone (GnRH) secretion by heme molecules: a regulatory role for carbon monoxide?
    Lamar CA; Mahesh VB; Brann DW
    Endocrinology; 1996 Feb; 137(2):790-3. PubMed ID: 8593832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct demonstration of a physiological role for carbon monoxide in olfactory receptor neurons.
    Ingi T; Ronnett GV
    J Neurosci; 1995 Dec; 15(12):8214-22. PubMed ID: 8613755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdiction of the diabetic state in NOD mice by sustained induction of heme oxygenase: possible role of carbon monoxide and bilirubin.
    Li M; Peterson S; Husney D; Inaba M; Guo K; Terada E; Morita T; Patil K; Kappas A; Ikehara S; Abraham NG
    Antioxid Redox Signal; 2007 Jul; 9(7):855-63. PubMed ID: 17508911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes of heme oxygenase-1 in the hippocampus of rats after acute carbon monoxide poisoning.
    Guan L; Zhang YL; Wen T; Wang XF; Zhu MX; Zhao JY
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):165-72. PubMed ID: 20422170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of in vivo carbon monoxide production in laboratory animals via exhaled air.
    Dercho RA; Nakatsu K; Wong RJ; Stevenson DK; Vreman HJ
    J Pharmacol Toxicol Methods; 2006; 54(3):288-95. PubMed ID: 16540352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.