These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8974986)

  • 1. Stimulus frequency otoacoustic emissions from guinea pig and human subjects.
    Souter M
    Hear Res; 1995 Oct; 90(1-2):1-11. PubMed ID: 8974986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of stimulus frequency otoacoustic emissions.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Feb; 93(2):920-39. PubMed ID: 8445127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of stimulus frequency otoacoustic emissions by contralateral noise.
    Souter M
    Hear Res; 1995 Nov; 91(1-2):167-77. PubMed ID: 8647718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):679-94. PubMed ID: 26373935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of SFOAE microstructure in the guinea pig.
    Goodman SS; Withnell RH; Shera CA
    Hear Res; 2003 Sep; 183(1-2):7-17. PubMed ID: 13679133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2005 Jun; 117(6):3799-815. PubMed ID: 16018483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):153-163. PubMed ID: 27798720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of stimulus parameters on amplitude-modulated stimulus frequency otoacoustic emissions.
    Johnson TA; Beshaler L
    J Acoust Soc Am; 2013 Aug; 134(2):1121-33. PubMed ID: 23927112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common microstructure in behavioral hearing thresholds and stimulus-frequency otoacoustic emissions.
    Dewey JB; Dhar S
    J Acoust Soc Am; 2017 Nov; 142(5):3069. PubMed ID: 29195446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
    Goodman SS; Lee C; Guinan JJ; Lichtenhan JT
    Biophys J; 2020 Mar; 118(5):1183-1195. PubMed ID: 31968228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression.
    Vencovský V; Vetešník A; Gummer AW
    J Acoust Soc Am; 2020 Jun; 147(6):3992. PubMed ID: 32611132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears.
    Schairer KS; Keefe DH
    J Acoust Soc Am; 2005 Feb; 117(2):818-32. PubMed ID: 15759702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Dec; 122(6):3562-75. PubMed ID: 18247764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swept-tone transient-evoked otoacoustic emissions.
    Bennett CL; Özdamar Ö
    J Acoust Soc Am; 2010 Oct; 128(4):1833-44. PubMed ID: 20968356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave.
    Lichtenhan JT
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):17-28. PubMed ID: 22002610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations.
    Abdala C; Guardia YC; Shera CA
    J Acoust Soc Am; 2018 Jan; 143(1):181. PubMed ID: 29390734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.