BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8974992)

  • 1. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells.
    Wangemann P
    Hear Res; 1995 Oct; 90(1-2):149-57. PubMed ID: 8974992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro.
    Wangemann P; Liu J; Marcus DC
    Hear Res; 1995 Apr; 84(1-2):19-29. PubMed ID: 7642451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect of erythromycin on ion transport by stria vascularis and vestibular dark cells.
    Liu J; Marcus DC; Kobayashi T
    Acta Otolaryngol; 1996 Jul; 116(4):572-5. PubMed ID: 8831844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
    Marcus DC; Wu T; Wangemann P; Kofuji P
    Am J Physiol Cell Physiol; 2002 Feb; 282(2):C403-7. PubMed ID: 11788352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells.
    Sage CL; Marcus DC
    Hear Res; 2001 Oct; 160(1-2):1-9. PubMed ID: 11591484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model of vectorial potassium transport by cochlear marginal cells and vestibular dark cells.
    Quraishi IH; Raphael RM
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C591-602. PubMed ID: 17005601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stria vascularis and vestibular dark cells: characterisation of main structures responsible for inner-ear homeostasis, and their pathophysiological relations.
    Ciuman RR
    J Laryngol Otol; 2009 Feb; 123(2):151-62. PubMed ID: 18570690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis.
    Offner FF; Dallos P; Cheatham MA
    Hear Res; 1987; 29(2-3):117-24. PubMed ID: 3040655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunolocalization of P2Y4 and P2Y2 purinergic receptors in strial marginal cells and vestibular dark cells.
    Sage CL; Marcus DC
    J Membr Biol; 2002 Jan; 185(2):103-15. PubMed ID: 11891569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel structures in marginal and intermediate cells presumably relate to functions of apical versus basal strial strata.
    Spicer SS; Schulte BA
    Hear Res; 2005 Feb; 200(1-2):87-101. PubMed ID: 15668041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Potassium ion secretion and generation of the endocochlear potential in the stria vascularis].
    Wangemann P
    HNO; 1997 Apr; 45(4):205-9. PubMed ID: 9221259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive blue 2, an antagonist of rat P2Y4, increases K+ secretion in rat cochlea strial marginal cells.
    Lee JH; Heo JH; Chang SO; Kim CS; Oh SH
    Hear Res; 2006 Sep; 219(1-2):66-73. PubMed ID: 16839719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus.
    Hibino H; Nin F; Tsuzuki C; Kurachi Y
    Pflugers Arch; 2010 Mar; 459(4):521-33. PubMed ID: 20012478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ouabain-induced vacuolar formation in marginal cells in the stria vascularis is dependent on perilymphatic Na(+).
    Higashiyama K; Takeuchi S; Azuma H; Sawada S; Kakigi A; Takeda T
    ORL J Otorhinolaryngol Relat Spec; 2010; 71 Suppl 1():57-66. PubMed ID: 20185950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of stria vascularis melanocytes of viable dominant spotting (Wv/Wv) mouse mutants.
    Cable J; Barkway C; Steel KP
    Hear Res; 1992 Dec; 64(1):6-20. PubMed ID: 1490901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency.
    Spicer SS; Schulte BA
    Hear Res; 1996 Oct; 100(1-2):80-100. PubMed ID: 8922982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential.
    Shibata T; Hibino H; Doi K; Suzuki T; Hisa Y; Kurachi Y
    Am J Physiol Cell Physiol; 2006 Nov; 291(5):C1038-48. PubMed ID: 16822945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inwardly rectifying K+ currents in intermediate cells in the cochlea of gerbils: a possible contribution to the endocochlear potential.
    Takeuchi S; Ando M
    Neurosci Lett; 1998 May; 247(2-3):175-8. PubMed ID: 9655621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenergic and muscarinic control of cochlear endolymph production.
    Wangemann P
    Adv Otorhinolaryngol; 2002; 59():42-50. PubMed ID: 11885660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion transport in the endolymphatic space.
    Morgenstern C; Amano H; Orsulakova A
    Am J Otolaryngol; 1982; 3(5):323-7. PubMed ID: 6293327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.