These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The influence of the cochlear efferent system on chronic acoustic trauma. Zheng XY; Henderson D; Hu BH; Ding DL; McFadden SL Hear Res; 1997 May; 107(1-2):147-59. PubMed ID: 9165355 [TBL] [Abstract][Full Text] [Related]
4. Cochlear de-efferentation and impulse noise-induced acoustic trauma in the chinchilla. Zheng XY; McFadden SL; Ding DL; Henderson D Hear Res; 2000 Jun; 144(1-2):187-95. PubMed ID: 10831877 [TBL] [Abstract][Full Text] [Related]
5. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise. Harding GW; Bohne BA; Lee SC; Salt AN Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889 [TBL] [Abstract][Full Text] [Related]
6. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. Maison SF; Usubuchi H; Liberman MC J Neurosci; 2013 Mar; 33(13):5542-52. PubMed ID: 23536069 [TBL] [Abstract][Full Text] [Related]
7. Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. Kujawa SG; Liberman MC J Neurophysiol; 1997 Dec; 78(6):3095-106. PubMed ID: 9405529 [TBL] [Abstract][Full Text] [Related]
8. The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss. Zheng XY; Henderson D; McFadden SL; Hu BH Hear Res; 1997 Feb; 104(1-2):191-203. PubMed ID: 9119763 [TBL] [Abstract][Full Text] [Related]
10. Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals. Müller M; Smolders JW; Ding-Pfennigdorff D; Klinke R Hear Res; 1996 Dec; 102(1-2):133-54. PubMed ID: 8951458 [TBL] [Abstract][Full Text] [Related]
12. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model. Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114 [TBL] [Abstract][Full Text] [Related]
13. Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. Reiter ER; Liberman MC J Neurophysiol; 1995 Feb; 73(2):506-14. PubMed ID: 7760114 [TBL] [Abstract][Full Text] [Related]
14. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem. Michler SA; Illing RB J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137 [TBL] [Abstract][Full Text] [Related]
15. Efferent-mediated protection of the cochlear base from acoustic overexposure by low doses of lithium. Horner KC; Higueret D; Cazals Y Eur J Neurosci; 1998 Apr; 10(4):1524-7. PubMed ID: 9749806 [TBL] [Abstract][Full Text] [Related]
17. A comparison of changes in the stereocilia between temporary and permanent hearing losses in acoustic trauma. Gao WY; Ding DL; Zheng XY; Ruan FM; Liu YJ Hear Res; 1992 Sep; 62(1):27-41. PubMed ID: 1429249 [TBL] [Abstract][Full Text] [Related]
18. Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. Liberman MC J Neurophysiol; 1988 Nov; 60(5):1779-98. PubMed ID: 3199181 [TBL] [Abstract][Full Text] [Related]
19. Dynamic changes in hair cell stereocilia and cochlear transduction after noise exposure. Wang H; Yin S; Yu Z; Huang Y; Wang J Biochem Biophys Res Commun; 2011 Jun; 409(4):616-21. PubMed ID: 21616058 [TBL] [Abstract][Full Text] [Related]
20. DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise. Harding GW; Bohne BA; Ahmad M Hear Res; 2002 Dec; 174(1-2):158-71. PubMed ID: 12433407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]