BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 8974995)

  • 1. Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil.
    Henry KR
    Hear Res; 1995 Oct; 90(1-2):176-84. PubMed ID: 8974995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory nerve neurophonic tuning curves produced by masking of round window responses.
    Henry KR
    Hear Res; 1997 Feb; 104(1-2):167-76. PubMed ID: 9119760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory nerve neurophonic produced by the frequency difference of two simultaneously presented tones.
    Henry KR
    Hear Res; 1996 Sep; 99(1-2):151-9. PubMed ID: 8970823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning curves of the difference tone auditory nerve neurophonic.
    Henry KR
    Hear Res; 1996 Sep; 99(1-2):160-7. PubMed ID: 8970824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The auditory neurophonic: basic properties.
    Snyder RL; Schreiner CE
    Hear Res; 1984 Sep; 15(3):261-80. PubMed ID: 6501114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window.
    He W; Porsov E; Kemp D; Nuttall AL; Ren T
    PLoS One; 2012; 7(3):e34356. PubMed ID: 22470560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraoperative round window recordings to acoustic stimuli from cochlear implant patients.
    Choudhury B; Fitzpatrick DC; Buchman CA; Wei BP; Dillon MT; He S; Adunka OF
    Otol Neurotol; 2012 Dec; 33(9):1507-15. PubMed ID: 23047261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an EPSP-like potential recorded remotely from the round window.
    Dolan DF; Xi L; Nuttall AL
    J Acoust Soc Am; 1989 Dec; 86(6):2167-71. PubMed ID: 2600307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K; Holland NJ; Lupo JE; Jenkins HA; Tollin DJ
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential use of low-frequency tones to locate regions of outer hair cell loss.
    Kamerer AM; Diaz FJ; Peppi M; Chertoff ME
    Hear Res; 2016 Dec; 342():39-47. PubMed ID: 27677389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective electrophysiologic findings of round window stimulation in a model of experimentally induced stapes fixation.
    Lupo JE; Koka K; Holland NJ; Jenkins HA; Tollin DJ
    Otol Neurotol; 2009 Dec; 30(8):1215-24. PubMed ID: 19779388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asynchronous neural activity recorded from the round window.
    Dolan DF; Nuttall AL; Avinash G
    J Acoust Soc Am; 1990 Jun; 87(6):2621-7. PubMed ID: 2373796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid changes in cochlear nucleus cell size following blockade of auditory nerve electrical activity in gerbils.
    Pasic TR; Rubel EW
    J Comp Neurol; 1989 May; 283(4):474-80. PubMed ID: 2745750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced cochlear responses after sound exposure.
    Szymko YM; Zwislocki JJ; Hertig L
    Hear Res; 1997 Aug; 110(1-2):164-78. PubMed ID: 9282899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity.
    McMahon CM; Patuzzi RB
    Hear Res; 2002 Nov; 173(1-2):134-52. PubMed ID: 12372642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlative changes of auditory nerve and microphonic potentials throughout sleep.
    Velluti R; Pedemonte M; GarcĂ­a-Austt E
    Hear Res; 1989 May; 39(1-2):203-8. PubMed ID: 2737966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms.
    Charaziak KK; Siegel JH; Shera CA
    J Assoc Res Otolaryngol; 2018 Aug; 19(4):401-419. PubMed ID: 30014309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.