BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8975009)

  • 1. Patterns of GFAP-immunoreactivity parallel the tonotopic axis in the developing dorsal cochlear nucleus.
    Riggs GH; Cooper NG; Schweitzer L
    Hear Res; 1995 Oct; 90(1-2):89-96. PubMed ID: 8975009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal development of glial fibrillary acidic protein immunoreactivity in the hamster arcuate nucleus.
    Suarez I; Fernandez B; Bodega G; Tranque P; Olmos G; Garcia-Segura LM
    Brain Res; 1987 Dec; 465(1-2):89-95. PubMed ID: 3440214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the tonotopic map of the dorsal cochlear nucleus in hamsters with hair cell loss and radial nerve bundle degeneration.
    Meleca RJ; Kaltenbach JA; Falzarano PR
    Brain Res; 1997 Mar; 750(1-2):201-13. PubMed ID: 9098546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of glycine-like immunoreactivity in the dorsal cochlear nucleus.
    Riggs GH; Walsh EJ; Schweitzer L
    Hear Res; 1995 Sep; 89(1-2):172-80. PubMed ID: 8600123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glial fibrillary acidic protein immunoreactivity in adrenocortical and Leydig cells of the Syrian golden hamster (Mesocricetus auratus).
    Maunoury R; Portier MM; Léonard N; McCormick D
    J Neuroimmunol; 1991 Dec; 35(1-3):119-29. PubMed ID: 1720132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic fibroblast growth factor, neurofilament, and glial fibrillary acidic protein immunoreactivities in the myenteric plexus of the rat esophagus and colon.
    Chadi G; Gomide VC; Rodrigues de Souza R; Scabello RT; Maurício da Silva C
    J Morphol; 2004 Sep; 261(3):323-33. PubMed ID: 15281060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related changes in GFAP-immunoreactive astrocytes in the rat ventral cochlear nucleus.
    Jalenques I; Burette A; Albuisson E; Romand R
    Hear Res; 1997 May; 107(1-2):113-24. PubMed ID: 9165352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Expression of glial fibrillary acidic protein in the developing human brain].
    Gaĭdar LI; Berezin VA; Vasilov RG
    Biokhimiia; 1991 Jul; 56(7):1322-9. PubMed ID: 1718451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The differential response of astrocytes within the vestibular and cochlear nuclei following unilateral labyrinthectomy or vestibular afferent activity blockade by transtympanic tetrodotoxin injection in the rat.
    Campos-Torres A; Touret M; Vidal PP; Barnum S; de Waele C
    Neuroscience; 2005; 130(4):853-65. PubMed ID: 15652984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fos-like immunoreactivity in central auditory neurons of the mouse.
    Brown MC; Liu TS
    J Comp Neurol; 1995 Jun; 357(1):85-97. PubMed ID: 7673470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.
    Sharma S; Nag TC; Thakar A; Bhardwaj DN; Roy TS
    J Chem Neuroanat; 2014 Mar; 56():1-12. PubMed ID: 24412669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of vimentin and glial fibrillary acidic protein in the developing rat spinal cord: an immunocytochemical study of the spinal cord glial system.
    Oudega M; Marani E
    J Anat; 1991 Dec; 179():97-114. PubMed ID: 1817147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-antigen and glial fibrillary acidic protein immunoreactivity in the in situ pineal gland of hamster and gerbil and in pineal grafts: developmental expression of pinealocyte and glial markers.
    Li K; Welsh MG
    Am J Anat; 1991 Dec; 192(4):510-22. PubMed ID: 1781457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost.
    Arochena M; Anadón R; Díaz-Regueira SM
    J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prenatal exposure to ethanol alters the postnatal development and transformation of radial glia to astrocytes in the cortex.
    Miller MW; Robertson S
    J Comp Neurol; 1993 Nov; 337(2):253-66. PubMed ID: 8276999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of glial fibrillary acidic protein (GFAP) in the cochlear nucleus of adult and aged rats.
    Jalenques I; Albuisson E; Despres G; Romand R
    Brain Res; 1995 Jul; 686(2):223-32. PubMed ID: 7583287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glial cells revealed by GFAP immunoreactivity in fish gut.
    Hagström C; Olsson C
    Cell Tissue Res; 2010 Jul; 341(1):73-81. PubMed ID: 20512593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus.
    Lavialle M; Servière J
    Neuroreport; 1993 Sep; 4(11):1243-6. PubMed ID: 8219021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for reactive astrocytes in rat vestibular and cochlear nuclei following unilateral inner ear lesion.
    de Waele C; Campos Torres A; Josset P; Vidal PP
    Eur J Neurosci; 1996 Sep; 8(9):2006-18. PubMed ID: 8921291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.