These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 8975605)
1. Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Bayles DO; Annous BA; Wilkinson BJ Appl Environ Microbiol; 1996 Mar; 62(3):1116-9. PubMed ID: 8975605 [TBL] [Abstract][Full Text] [Related]
2. Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure. Wemekamp-Kamphuis HH; Karatzas AK; Wouters JA; Abee T Appl Environ Microbiol; 2002 Feb; 68(2):456-63. PubMed ID: 11823178 [TBL] [Abstract][Full Text] [Related]
3. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Annous BA; Becker LA; Bayles DO; Labeda DP; Wilkinson BJ Appl Environ Microbiol; 1997 Oct; 63(10):3887-94. PubMed ID: 9327552 [TBL] [Abstract][Full Text] [Related]
4. Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. Edgcomb MR; Sirimanne S; Wilkinson BJ; Drouin P; Morse RD Biochim Biophys Acta; 2000 Jan; 1463(1):31-42. PubMed ID: 10631292 [TBL] [Abstract][Full Text] [Related]
5. Analysis of heat and cold shock proteins in Listeria by two-dimensional electrophoresis. Phan-Thanh L; Gormon T Electrophoresis; 1995 Mar; 16(3):444-50. PubMed ID: 7607179 [TBL] [Abstract][Full Text] [Related]
6. Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes. Loepfe C; Raimann E; Stephan R; Tasara T Foodborne Pathog Dis; 2010 Jul; 7(7):775-83. PubMed ID: 20184451 [TBL] [Abstract][Full Text] [Related]
7. The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Wonderling LD; Wilkinson BJ; Bayles DO Appl Environ Microbiol; 2004 Apr; 70(4):1935-43. PubMed ID: 15066783 [TBL] [Abstract][Full Text] [Related]
8. The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. Hébraud M; Guzzo J FEMS Microbiol Lett; 2000 Sep; 190(1):29-34. PubMed ID: 10981685 [TBL] [Abstract][Full Text] [Related]
9. SigmaB-dependent and sigmaB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth. Chan YC; Boor KJ; Wiedmann M Appl Environ Microbiol; 2007 Oct; 73(19):6019-29. PubMed ID: 17675428 [TBL] [Abstract][Full Text] [Related]
10. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures. Seel W; Flegler A; Zunabovic-Pichler M; Lipski A J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29661862 [No Abstract] [Full Text] [Related]
11. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress. Miladi H; Elabed H; Ben Slama R; Rhim A; Bakhrouf A Arch Microbiol; 2017 Mar; 199(2):259-265. PubMed ID: 27695911 [TBL] [Abstract][Full Text] [Related]
12. Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey. Angelidis AS; Smith LT; Smith GM Int J Food Microbiol; 2002 May; 75(1-2):1-9. PubMed ID: 11999105 [TBL] [Abstract][Full Text] [Related]
13. Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Schmid B; Klumpp J; Raimann E; Loessner MJ; Stephan R; Tasara T Appl Environ Microbiol; 2009 Mar; 75(6):1621-7. PubMed ID: 19151183 [TBL] [Abstract][Full Text] [Related]
14. Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Angelidis AS; Smith GM Appl Environ Microbiol; 2003 Dec; 69(12):7492-8. PubMed ID: 14660402 [TBL] [Abstract][Full Text] [Related]
15. Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Jones SL; Drouin P; Wilkinson BJ; II Morse PD Arch Microbiol; 2002 Mar; 177(3):217-22. PubMed ID: 11907677 [TBL] [Abstract][Full Text] [Related]
16. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Wemekamp-Kamphuis HH; Sleator RD; Wouters JA; Hill C; Abee T Appl Environ Microbiol; 2004 May; 70(5):2912-8. PubMed ID: 15128551 [TBL] [Abstract][Full Text] [Related]
17. Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 10403S grown at 37 °C and 8 °C. Singh AK; Ulanov AV; Li Z; Jayaswal RK; Wilkinson BJ Int J Food Microbiol; 2011 Aug; 148(2):107-14. PubMed ID: 21645939 [TBL] [Abstract][Full Text] [Related]
18. Menaquinone-mediated regulation of membrane fluidity is relevant for fitness of Listeria monocytogenes. Flegler A; Kombeitz V; Lipski A Arch Microbiol; 2021 Aug; 203(6):3353-3360. PubMed ID: 33871675 [TBL] [Abstract][Full Text] [Related]
19. Role of flhA and motA in growth of Listeria monocytogenes at low temperatures. Mattila M; Lindström M; Somervuo P; Markkula A; Korkeala H Int J Food Microbiol; 2011 Aug; 148(3):177-83. PubMed ID: 21683466 [TBL] [Abstract][Full Text] [Related]
20. Cold-shock proteins affect desiccation tolerance, biofilm formation and motility in Listeria monocytogenes. Kragh ML; Muchaamba F; Tasara T; Truelstrup Hansen L Int J Food Microbiol; 2020 Sep; 329():108662. PubMed ID: 32505890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]