BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8975694)

  • 1. Evolution of the diatoms (Bacillariophyta). IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record.
    Kooistra WH; Medlin LK
    Mol Phylogenet Evol; 1996 Dec; 6(3):391-407. PubMed ID: 8975694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the diatoms (Bacillariophyta). II. Nuclear-encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms.
    Medlin LK; Kooistra WH; Gersonde R; Wellbrock U
    Mol Biol Evol; 1996 Jan; 13(1):67-75. PubMed ID: 8583907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the RNA polymerase B' subunit gene (rpoB') in Halobacteriales: a complementary molecular marker to the SSU rRNA gene.
    Walsh DA; Bapteste E; Kamekura M; Doolittle WF
    Mol Biol Evol; 2004 Dec; 21(12):2340-51. PubMed ID: 15356285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fossil calibrations and molecular divergence time estimates in centrarchid fishes (Teleostei: Centrarchidae).
    Near TJ; Bolnick DI; Wainwright PC
    Evolution; 2005 Aug; 59(8):1768-82. PubMed ID: 16329246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets.
    Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE
    Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rise of the rhizosolenid diatoms.
    Damsté JS; Muyzer G; Abbas B; Rampen SW; Massé G; Allard WG; Belt ST; Robert JM; Rowland SJ; Moldowan JM; Barbanti SM; Fago FJ; Denisevich P; Dahl J; Trindade LA; Schouten S
    Science; 2004 Apr; 304(5670):584-7. PubMed ID: 15105500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence from small-subunit ribosomal RNA sequences for a fungal origin of Microsporidia.
    Fischer WM; Palmer JD
    Mol Phylogenet Evol; 2005 Sep; 36(3):606-22. PubMed ID: 15923129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RpoA: a useful gene for phylogenetic analysis in diatoms.
    Fox MG; Sorhannus UM
    J Eukaryot Microbiol; 2003; 50(6):471-5. PubMed ID: 14733439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock.
    Pereira SL; Baker AJ
    Mol Biol Evol; 2006 Sep; 23(9):1731-40. PubMed ID: 16774978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence.
    Raaum RL; Sterner KN; Noviello CM; Stewart CB; Disotell TR
    J Hum Evol; 2005 Mar; 48(3):237-57. PubMed ID: 15737392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving an ancient, rapid radiation in Saxifragales.
    Jian S; Soltis PS; Gitzendanner MA; Moore MJ; Li R; Hendry TA; Qiu YL; Dhingra A; Bell CD; Soltis DE
    Syst Biol; 2008 Feb; 57(1):38-57. PubMed ID: 18275001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The age of the angiosperms: a molecular timescale without a clock.
    Bell CD; Soltis DE; Soltis PS
    Evolution; 2005 Jun; 59(6):1245-58. PubMed ID: 16050101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of RNA editing sites in the mitochondrial small subunit rRNA of the Myxomycota.
    Krishnan U; Barsamian A; Miller DL
    Methods Enzymol; 2007; 424():197-220. PubMed ID: 17662842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata).
    Smith AB; Pisani D; Mackenzie-Dodds JA; Stockley B; Webster BL; Littlewood DT
    Mol Biol Evol; 2006 Oct; 23(10):1832-51. PubMed ID: 16777927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches.
    Pérez-Losada M; Høeg JT; Crandall KA
    Syst Biol; 2004 Apr; 53(2):244-64. PubMed ID: 15205051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic analyses of a combined data set suggest that the Attheya lineage is the closest living relative of the pennate diatoms (Bacillariophyceae).
    Sorhannus U; Fox MG
    Protist; 2012 Mar; 163(2):252-62. PubMed ID: 21723193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia.
    Souffreau C; Verbruggen H; Wolfe AP; Vanormelingen P; Siver PA; Cox EJ; Mann DG; Van de Vijver B; Sabbe K; Vyverman W
    Mol Phylogenet Evol; 2011 Dec; 61(3):866-79. PubMed ID: 21930222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the fossil record to estimate the age of the last common ancestor of extant primates.
    Tavaré S; Marshall CR; Will O; Soligo C; Martin RD
    Nature; 2002 Apr; 416(6882):726-9. PubMed ID: 11961552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematics of the lizard family pygopodidae with implications for the diversification of Australian temperate biotas.
    Jennings WB; Pianka ER; Donnellan S
    Syst Biol; 2003 Dec; 52(6):757-80. PubMed ID: 14668116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea).
    Tinn O; Oakley TH
    Mol Phylogenet Evol; 2008 Jul; 48(1):157-67. PubMed ID: 18482852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.