These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 8975720)
1. Isolation, sequencing, and mapping of the human homologue of the yeast transcription factor, SPT5. Chiang PW; Fogel E; Jackson CL; Lieuallen K; Lennon G; Qu X; Wang SQ; Kurnit DM Genomics; 1996 Dec; 38(3):421-4. PubMed ID: 8975720 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of the human and mouse homologues (SUPT4H and Supt4h) of the yeast SPT4 gene. Chiang PW; Wang SQ; Smithivas P; Song WJ; Crombez E; Akhtar A; Im R; Greenfield J; Ramamoorthy S; Van Keuren M; Blackburn CC; Tsai CH; Kurnit DM Genomics; 1996 Jun; 34(3):368-75. PubMed ID: 8786137 [TBL] [Abstract][Full Text] [Related]
3. Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation. Wu-Baer F; Lane WS; Gaynor RB J Mol Biol; 1998 Mar; 277(2):179-97. PubMed ID: 9514752 [TBL] [Abstract][Full Text] [Related]
4. Isolation of murine SPT5 homologue: completion of the isolation and characterization of human and murine homologues of yeast chromatin structural protein complex SPT4, SPT5, and SPT6. Chiang PW; Stubbs L; Zhang L; Kurnit DM Genomics; 1998 Feb; 47(3):426-8. PubMed ID: 9480761 [No Abstract] [Full Text] [Related]
5. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Hartzog GA; Wada T; Handa H; Winston F Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930 [TBL] [Abstract][Full Text] [Related]
6. Identification and analysis of the human and murine putative chromatin structure regulator SUPT6H and Supt6h. Chiang PW; Wang S; Smithivas P; Song WJ; Ramamoorthy S; Hillman J; Puett S; Van Keuren ML; Crombez E; Kumar A; Glover TW; Miller DE; Tsai CH; Blackburn CC; Chen XN; Sun Z; Cheng JF; Korenberg JR; Kurnit DM Genomics; 1996 Jun; 34(3):328-33. PubMed ID: 8786132 [TBL] [Abstract][Full Text] [Related]
7. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Andrulis ED; Guzmán E; Döring P; Werner J; Lis JT Genes Dev; 2000 Oct; 14(20):2635-49. PubMed ID: 11040217 [TBL] [Abstract][Full Text] [Related]
8. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Swanson MS; Malone EA; Winston F Mol Cell Biol; 1991 Aug; 11(8):4286. PubMed ID: 2072920 [No Abstract] [Full Text] [Related]
9. Molecular evidence for a positive role of Spt4 in transcription elongation. Rondón AG; García-Rubio M; González-Barrera S; Aguilera A EMBO J; 2003 Feb; 22(3):612-20. PubMed ID: 12554661 [TBL] [Abstract][Full Text] [Related]
10. Cloning, structural characterization, and chromosomal localization of the human orthologue of Saccharomyces cerevisiae MSH5 gene. Her C; Doggett NA Genomics; 1998 Aug; 52(1):50-61. PubMed ID: 9740671 [TBL] [Abstract][Full Text] [Related]
11. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Swanson MS; Malone EA; Winston F Mol Cell Biol; 1991 Jun; 11(6):3009-19. PubMed ID: 1840633 [TBL] [Abstract][Full Text] [Related]
12. AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum. Schmitt EK; Hoff B; Kück U Gene; 2004 Nov; 342(2):269-81. PubMed ID: 15527986 [TBL] [Abstract][Full Text] [Related]
13. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Kaplan CD; Morris JR; Wu C; Winston F Genes Dev; 2000 Oct; 14(20):2623-34. PubMed ID: 11040216 [TBL] [Abstract][Full Text] [Related]
14. A Saccharomyces servazzii clone homologous to Saccharomyces cerevisiae chromosome III spanning KAR4, ARS 304 and SPB1 lacks the recombination enhancer but contains an unknown ORF. Zhou Z; Sun K; Lipstein EA; Haber JE Yeast; 2001 Jun; 18(9):789-95. PubMed ID: 11427961 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of JMJD2 family genes in silico. Katoh M; Katoh M Int J Oncol; 2004 Jun; 24(6):1623-8. PubMed ID: 15138608 [TBL] [Abstract][Full Text] [Related]
16. The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1. Kelter AR; Herchenbach J; Wirth B Genomics; 2000 Dec; 70(3):315-26. PubMed ID: 11161782 [TBL] [Abstract][Full Text] [Related]
17. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex. Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406 [TBL] [Abstract][Full Text] [Related]
19. Isolation and sequence of the GCR3 homologue from Candida albicans by complementation of (delta)gcr3 strain of Saccharomyces cerevisiae. Uemura H; Nakamoto K; Sugioka S; Tadenuma M Yeast; 1999 Mar; 15(4):323-7. PubMed ID: 10206191 [TBL] [Abstract][Full Text] [Related]
20. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Swanson MS; Winston F Genetics; 1992 Oct; 132(2):325-36. PubMed ID: 1330823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]