BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 8975720)

  • 1. Isolation, sequencing, and mapping of the human homologue of the yeast transcription factor, SPT5.
    Chiang PW; Fogel E; Jackson CL; Lieuallen K; Lennon G; Qu X; Wang SQ; Kurnit DM
    Genomics; 1996 Dec; 38(3):421-4. PubMed ID: 8975720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of the human and mouse homologues (SUPT4H and Supt4h) of the yeast SPT4 gene.
    Chiang PW; Wang SQ; Smithivas P; Song WJ; Crombez E; Akhtar A; Im R; Greenfield J; Ramamoorthy S; Van Keuren M; Blackburn CC; Tsai CH; Kurnit DM
    Genomics; 1996 Jun; 34(3):368-75. PubMed ID: 8786137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation.
    Wu-Baer F; Lane WS; Gaynor RB
    J Mol Biol; 1998 Mar; 277(2):179-97. PubMed ID: 9514752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of murine SPT5 homologue: completion of the isolation and characterization of human and murine homologues of yeast chromatin structural protein complex SPT4, SPT5, and SPT6.
    Chiang PW; Stubbs L; Zhang L; Kurnit DM
    Genomics; 1998 Feb; 47(3):426-8. PubMed ID: 9480761
    [No Abstract]   [Full Text] [Related]  

  • 5. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae.
    Hartzog GA; Wada T; Handa H; Winston F
    Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and analysis of the human and murine putative chromatin structure regulator SUPT6H and Supt6h.
    Chiang PW; Wang S; Smithivas P; Song WJ; Ramamoorthy S; Hillman J; Puett S; Van Keuren ML; Crombez E; Kumar A; Glover TW; Miller DE; Tsai CH; Blackburn CC; Chen XN; Sun Z; Cheng JF; Korenberg JR; Kurnit DM
    Genomics; 1996 Jun; 34(3):328-33. PubMed ID: 8786132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation.
    Andrulis ED; Guzmán E; Döring P; Werner J; Lis JT
    Genes Dev; 2000 Oct; 14(20):2635-49. PubMed ID: 11040217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.
    Swanson MS; Malone EA; Winston F
    Mol Cell Biol; 1991 Aug; 11(8):4286. PubMed ID: 2072920
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular evidence for a positive role of Spt4 in transcription elongation.
    Rondón AG; García-Rubio M; González-Barrera S; Aguilera A
    EMBO J; 2003 Feb; 22(3):612-20. PubMed ID: 12554661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, structural characterization, and chromosomal localization of the human orthologue of Saccharomyces cerevisiae MSH5 gene.
    Her C; Doggett NA
    Genomics; 1998 Aug; 52(1):50-61. PubMed ID: 9740671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.
    Swanson MS; Malone EA; Winston F
    Mol Cell Biol; 1991 Jun; 11(6):3009-19. PubMed ID: 1840633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AcFKH1, a novel member of the forkhead family, associates with the RFX transcription factor CPCR1 in the cephalosporin C-producing fungus Acremonium chrysogenum.
    Schmitt EK; Hoff B; Kück U
    Gene; 2004 Nov; 342(2):269-81. PubMed ID: 15527986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster.
    Kaplan CD; Morris JR; Wu C; Winston F
    Genes Dev; 2000 Oct; 14(20):2623-34. PubMed ID: 11040216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Saccharomyces servazzii clone homologous to Saccharomyces cerevisiae chromosome III spanning KAR4, ARS 304 and SPB1 lacks the recombination enhancer but contains an unknown ORF.
    Zhou Z; Sun K; Lipstein EA; Haber JE
    Yeast; 2001 Jun; 18(9):789-95. PubMed ID: 11427961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of JMJD2 family genes in silico.
    Katoh M; Katoh M
    Int J Oncol; 2004 Jun; 24(6):1623-8. PubMed ID: 15138608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1.
    Kelter AR; Herchenbach J; Wirth B
    Genomics; 2000 Dec; 70(3):315-26. PubMed ID: 11161782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cDNA isolation, genomic structure, regulation, and chromosomal localization of human lung Kruppel-like factor.
    Wani MA; Conkright MD; Jeffries S; Hughes MJ; Lingrel JB
    Genomics; 1999 Aug; 60(1):78-86. PubMed ID: 10458913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and sequence of the GCR3 homologue from Candida albicans by complementation of (delta)gcr3 strain of Saccharomyces cerevisiae.
    Uemura H; Nakamoto K; Sugioka S; Tadenuma M
    Yeast; 1999 Mar; 15(4):323-7. PubMed ID: 10206191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae.
    Swanson MS; Winston F
    Genetics; 1992 Oct; 132(2):325-36. PubMed ID: 1330823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.