These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8976571)

  • 1. Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol.
    Rohl CA; Chakrabartty A; Baldwin RL
    Protein Sci; 1996 Dec; 5(12):2623-37. PubMed ID: 8976571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trifluoroethanol effects on helix propensity and electrostatic interactions in the helical peptide from ribonuclease T1.
    Myers JK; Pace CN; Scholtz JM
    Protein Sci; 1998 Feb; 7(2):383-8. PubMed ID: 9521115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water.
    Luo P; Baldwin RL
    Biochemistry; 1997 Jul; 36(27):8413-21. PubMed ID: 9204889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions.
    Chakrabartty A; Kortemme T; Baldwin RL
    Protein Sci; 1994 May; 3(5):843-52. PubMed ID: 8061613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative determination of helical propensities from trifluoroethanol titration curves.
    Jasanoff A; Fersht AR
    Biochemistry; 1994 Mar; 33(8):2129-35. PubMed ID: 8117669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large differences in the helix propensities of alanine and glycine.
    Chakrabartty A; Schellman JA; Baldwin RL
    Nature; 1991 Jun; 351(6327):586-8. PubMed ID: 2046766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between water and polar groups of the helix backbone: an important determinant of helix propensities.
    Luo P; Baldwin RL
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4930-5. PubMed ID: 10220396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helix-stabilizing nonpolar interactions between tyrosine and leucine in aqueous and TFE solutions: 2D-1H NMR and CD studies in alanine-lysine peptides.
    Padmanabhan S; Jiménez MA; Laurents DV; Rico M
    Biochemistry; 1998 Dec; 37(49):17318-30. PubMed ID: 9860846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helix propensities are identical in proteins and peptides.
    Myers JK; Pace CN; Scholtz JM
    Biochemistry; 1997 Sep; 36(36):10923-9. PubMed ID: 9283083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation.
    Landon C; Meudal H; Boulanger N; Bulet P; Vovelle F
    Biopolymers; 2006 Feb; 81(2):92-103. PubMed ID: 16170803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water.
    Scholtz JM; Qian H; York EJ; Stewart JM; Baldwin RL
    Biopolymers; 1991 Nov; 31(13):1463-70. PubMed ID: 1814498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic solvation in aqueous trifluoroethanol solution.
    Bodkin MJ; Goodfellow JM
    Biopolymers; 1996 Jul; 39(1):43-50. PubMed ID: 8924626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic evidence for backbone desolvation of helical peptides by 2,2,2-trifluoroethanol: an isotope-edited FTIR study.
    Starzyk A; Barber-Armstrong W; Sridharan M; Decatur SM
    Biochemistry; 2005 Jan; 44(1):369-76. PubMed ID: 15628879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helix propagation in trifluoroethanol solutions.
    Storrs RW; Truckses D; Wemmer DE
    Biopolymers; 1992 Dec; 32(12):1695-702. PubMed ID: 1472652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position dependence of non-polar amino acid intrinsic helical propensities.
    Petukhov M; Muñoz V; Yumoto N; Yoshikawa S; Serrano L
    J Mol Biol; 1998 Apr; 278(1):279-89. PubMed ID: 9571050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding.
    Kentsis A; Sosnick TR
    Biochemistry; 1998 Oct; 37(41):14613-22. PubMed ID: 9772190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two different regimes in alcohol-induced coil-helix transition: effects of 2,2,2-trifluoroethanol on proteins being either independent of or enhanced by solvent structural fluctuations.
    Ohgi H; Imamura H; Sumi T; Nishikawa K; Koga Y; Westh P; Morita T
    Phys Chem Chem Phys; 2021 Mar; 23(10):5760-5772. PubMed ID: 33481971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helix propensities of basic amino acids increase with the length of the side-chain.
    Padmanabhan S; York EJ; Stewart JM; Baldwin RL
    J Mol Biol; 1996 Apr; 257(3):726-34. PubMed ID: 8648636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.