These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8977096)
21. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. Park E; Rho YM; Koh OJ; Ahn SW; Seong IS; Song JJ; Bang O; Seol JH; Wang J; Eom SH; Chung CH J Biol Chem; 2005 Jun; 280(24):22892-8. PubMed ID: 15849200 [TBL] [Abstract][Full Text] [Related]
22. Nucleotide triphosphates inhibit the degradation of unfolded proteins by HslV peptidase. Lee JW; Park E; Bang O; Eom SH; Cheong GW; Chung CH; Seol JH Mol Cells; 2007 Apr; 23(2):252-7. PubMed ID: 17464204 [TBL] [Abstract][Full Text] [Related]
23. Mutational analysis of the two ATP-binding sites in ClpB, a heat shock protein with protein-activated ATPase activity in Escherichia coli. Kim KI; Woo KM; Seong IS; Lee ZW; Baek SH; Chung CH Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):671-6. PubMed ID: 9677327 [TBL] [Abstract][Full Text] [Related]
24. The quaternary arrangement of HslU and HslV in a cocrystal: a response to Wang, Yale. Bochtler M; Song HK; Hartmann C; Ramachandran R; Huber R J Struct Biol; 2001 Sep; 135(3):281-93. PubMed ID: 11722168 [TBL] [Abstract][Full Text] [Related]
25. HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis. Lee JW; Park E; Jeong MS; Jeon YJ; Eom SH; Seol JH; Chung CH J Biol Chem; 2009 Nov; 284(48):33475-84. PubMed ID: 19801685 [TBL] [Abstract][Full Text] [Related]
26. A corrected quaternary arrangement of the peptidase HslV and atpase HslU in a cocrystal structure. Wang J J Struct Biol; 2001 Apr; 134(1):15-24. PubMed ID: 11469873 [TBL] [Abstract][Full Text] [Related]
27. Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation. Park E; Lee JW; Yoo HM; Ha BH; An JY; Jeon YJ; Seol JH; Eom SH; Chung CH J Mol Biol; 2013 Aug; 425(16):2940-54. PubMed ID: 23707406 [TBL] [Abstract][Full Text] [Related]
28. Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. Missiakas D; Schwager F; Betton JM; Georgopoulos C; Raina S EMBO J; 1996 Dec; 15(24):6899-909. PubMed ID: 9003766 [TBL] [Abstract][Full Text] [Related]
29. Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. Kessel M; Wu W; Gottesman S; Kocsis E; Steven AC; Maurizi MR FEBS Lett; 1996 Dec; 398(2-3):274-8. PubMed ID: 8977122 [TBL] [Abstract][Full Text] [Related]
30. Selective, energy-dependent proteolysis in Escherichia coli. Gottesman S; Wickner S; Jubete Y; Singh SK; Kessel M; Maurizi M Cold Spring Harb Symp Quant Biol; 1995; 60():533-48. PubMed ID: 8824426 [No Abstract] [Full Text] [Related]
31. Distinctive roles of the two ATP-binding sites in ClpA, the ATPase component of protease Ti in Escherichia coli. Seol JH; Baek SH; Kang MS; Ha DB; Chung CH J Biol Chem; 1995 Apr; 270(14):8087-92. PubMed ID: 7713911 [TBL] [Abstract][Full Text] [Related]
32. PCR genome walking identifies a genetic locus comprising two heat shock genes (hslV and hslU) from Leptospira borgpetersenii serovar hardjobovis. Lin M; Li Y Curr Microbiol; 2001 Dec; 43(6):452-6. PubMed ID: 11685516 [TBL] [Abstract][Full Text] [Related]
33. ATP hydrolysis is not stoichiometrically linked with proteolysis in the ATP-dependent protease La from Escherichia coli. Fischer H; Glockshuber R J Biol Chem; 1993 Oct; 268(30):22502-7. PubMed ID: 8226758 [TBL] [Abstract][Full Text] [Related]
34. The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. Kanemori M; Yanagi H; Yura T J Bacteriol; 1999 Jun; 181(12):3674-80. PubMed ID: 10368140 [TBL] [Abstract][Full Text] [Related]
35. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. Kanemori M; Nishihara K; Yanagi H; Yura T J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683 [TBL] [Abstract][Full Text] [Related]
36. Mutational analysis demonstrates different functional roles for the two ATP-binding sites in ClpAP protease from Escherichia coli. Singh SK; Maurizi MR J Biol Chem; 1994 Nov; 269(47):29537-45. PubMed ID: 7961938 [TBL] [Abstract][Full Text] [Related]
37. Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. Khattar MM FEBS Lett; 1997 Sep; 414(2):402-4. PubMed ID: 9315728 [TBL] [Abstract][Full Text] [Related]
38. Structure of Haemophilus influenzae HslU protein in crystals with one-dimensional disorder twinning. Trame CB; McKay DB Acta Crystallogr D Biol Crystallogr; 2001 Aug; 57(Pt 8):1079-90. PubMed ID: 11468391 [TBL] [Abstract][Full Text] [Related]
39. A point mutation within the ATP-binding site inactivates both catalytic functions of the ATP-dependent protease La (Lon) from Escherichia coli. Fischer H; Glockshuber R FEBS Lett; 1994 Dec; 356(1):101-3. PubMed ID: 7988699 [TBL] [Abstract][Full Text] [Related]
40. Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis. Roudiak SG; Shrader TE Biochemistry; 1998 Aug; 37(32):11255-63. PubMed ID: 9698372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]