These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8977115)

  • 1. Ultraviolet resonance Raman evidence for the absence of tyrosinate in octopus rhodopsin and the participation of Trp residues in the transition to acid metarhodopsin.
    Hashimoto S; Takeuchi H; Nakagawa M; Tsuda M
    FEBS Lett; 1996 Dec; 398(2-3):239-42. PubMed ID: 8977115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin.
    Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet resonance Raman examination of the light-induced protein structural changes in rhodopsin activation.
    Kochendoerfer GG; Kaminaka S; Mathies RA
    Biochemistry; 1997 Oct; 36(43):13153-9. PubMed ID: 9376376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman spectra of octopus acid and alkaline metarhodopsins.
    Kitagawa T; Tsuda M
    Biochim Biophys Acta; 1980 Jul; 624(1):211-7. PubMed ID: 7407234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments.
    Koutalos Y; Ebrey TG; Gilson HR; Honig B
    Biophys J; 1990 Aug; 58(2):493-501. PubMed ID: 2207250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A resonance Raman study of octopus bathorhodopsin with deuterium labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Photochem Photobiol; 1991 Dec; 54(6):1001-7. PubMed ID: 1775525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin.
    Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A
    Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural models of the photointermediates in the rhodopsin photocascade, lumirhodopsin, metarhodopsin I, and metarhodopsin II.
    Ishiguro M; Oyama Y; Hirano T
    Chembiochem; 2004 Mar; 5(3):298-310. PubMed ID: 14997522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin.
    Pande C; Deng H; Rath P; Callender RH; Schwemer J
    Biochemistry; 1987 Nov; 26(23):7426-30. PubMed ID: 3427084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-induced protein conformational changes in the photolysis of octopus rhodopsin.
    Nakagawa M; Kikkawa S; Iwasa T; Tsuda M
    Biophys J; 1997 May; 72(5):2320-8. PubMed ID: 9129835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II.
    Doukas AG; Aton B; Callender RH; Ebrey TG
    Biochemistry; 1978 Jun; 17(12):2430-5. PubMed ID: 678522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation analysis of glu181 and ser186 in the metarhodopsin I state.
    Ishiguro M
    Chembiochem; 2004 Sep; 5(9):1204-9. PubMed ID: 15368571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A resonance Raman study of the C=C stretch modes in bovine and octopus visual pigments with isotopically labeled retinal chromophores.
    Huang L; Deng H; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Photochem Photobiol; 1997 Dec; 66(6):747-54. PubMed ID: 9421961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A purified agonist-activated G-protein coupled receptor: truncated octopus Acid Metarhodopsin.
    Ashida A; Matsumoto K; Ebrey TG; Tsuda M
    Zoolog Sci; 2004 Mar; 21(3):245-50. PubMed ID: 15056918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the resonance Raman spectrum of a metarhodopsin: implications for the color of visual pigments.
    Sulkes M; Lewis A; Lemley AT; Cookingham R
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4266-70. PubMed ID: 1069982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.