These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 8977115)
21. Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin. Pande AJ; Callender RH; Ebrey TG; Tsuda M Biophys J; 1984 Mar; 45(3):573-6. PubMed ID: 6713069 [TBL] [Abstract][Full Text] [Related]
22. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy. Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280 [TBL] [Abstract][Full Text] [Related]
23. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin. Jäger F; Fahmy K; Sakmar TP; Siebert F Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209 [TBL] [Abstract][Full Text] [Related]
24. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Yan EC; Ganim Z; Kazmi MA; Chang BS; Sakmar TP; Mathies RA Biochemistry; 2004 Aug; 43(34):10867-76. PubMed ID: 15323547 [TBL] [Abstract][Full Text] [Related]
25. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852 [TBL] [Abstract][Full Text] [Related]
26. Infrared studies of octopus rhodopsin. Existence of a long-lived intermediate and the states of the carboxylic group of Asp-81 in rhodopsin and its photoproducts. Masuda S; Morita EH; Tasumi M; Iwasa T; Tsuda M FEBS Lett; 1993 Feb; 317(3):223-7. PubMed ID: 8425608 [TBL] [Abstract][Full Text] [Related]
27. Circular dichroism of cephalopod rhodopsin and its intermediates in the bleaching and photoregeneration process. Azuma K; Azuma M; Suzuki T Biochim Biophys Acta; 1975 Jun; 393(2):520-30. PubMed ID: 238616 [TBL] [Abstract][Full Text] [Related]
28. Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein. Hu X; Spiro TG Biochemistry; 1997 Dec; 36(50):15701-12. PubMed ID: 9398299 [TBL] [Abstract][Full Text] [Related]
29. A mutant rhodopsin photoproduct with a protonated Schiff base displays an active-state conformation: a Fourier-transform infrared spectroscopy study. Fahmy K; Siebert F; Sakmar TP Biochemistry; 1994 Nov; 33(46):13700-5. PubMed ID: 7947779 [TBL] [Abstract][Full Text] [Related]
30. Studies on cephalopod rhodopsin conformational changes in chromophore and protein during the photoregeneration process. Suzuki T; Sugahara M; Azuma K; Azuma M; Saimi Y; Kito Y Biochim Biophys Acta; 1974 Jan; 333(1):149-60. PubMed ID: 19397002 [TBL] [Abstract][Full Text] [Related]
31. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores. Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH Biochemistry; 1991 May; 30(18):4495-502. PubMed ID: 2021639 [TBL] [Abstract][Full Text] [Related]
32. Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Yan EC; Kazmi MA; Ganim Z; Hou JM; Pan D; Chang BS; Sakmar TP; Mathies RA Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9262-7. PubMed ID: 12835420 [TBL] [Abstract][Full Text] [Related]
33. A spectrally silent transformation in the photolysis of octopus rhodopsin: a protein conformational change without any accompanying change of the chromophore's absorption. Nishioku Y; Nakagawa M; Tsuda M; Terazima M Biophys J; 2001 Jun; 80(6):2922-7. PubMed ID: 11371464 [TBL] [Abstract][Full Text] [Related]
34. UV resonance Raman studies of alpha-nitrosyl hemoglobin derivatives: relation between the alpha 1-beta 2 subunit interface interactions and the Fe-histidine bonding of alpha heme. Nagatomo S; Nagai M; Tsuneshige A; Yonetani T; Kitagawa T Biochemistry; 1999 Jul; 38(30):9659-66. PubMed ID: 10423244 [TBL] [Abstract][Full Text] [Related]
35. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates. Bagley KA; Eisenstein L; Ebrey TG; Tsuda M Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842 [TBL] [Abstract][Full Text] [Related]
36. Magic angle spinning NMR studies on the metarhodopsin II intermediate of bovine rhodopsin: evidence for an unprotonated Schiff base. Smith SO; de Groot H; Gebhard R; Lugtenburg J Photochem Photobiol; 1992 Dec; 56(6):1035-9. PubMed ID: 1337211 [TBL] [Abstract][Full Text] [Related]
37. Effect of phospholipid and detergent on the Schiff base of cephalopod rhodopsin and metarhodopsin. Nashima K; Kawase N; Kito Y Biochim Biophys Acta; 1980 Dec; 626(2):390-6. PubMed ID: 7213657 [TBL] [Abstract][Full Text] [Related]
38. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin. Deng H; Callender RH Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083 [TBL] [Abstract][Full Text] [Related]
39. A novel photointermediate of octopus rhodopsin activates its G-protein. Nakagawa M; Kikkawa S; Tominaga K; Tsugi N; Tsuda M FEBS Lett; 1998 Oct; 436(2):259-62. PubMed ID: 9781691 [TBL] [Abstract][Full Text] [Related]
40. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix. Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]