These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 8977476)

  • 1. KATP channels mediate adenosine-induced hyperemia in retina.
    Gidday JM; Maceren RG; Shah AR; Meier JA; Zhu Y
    Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2624-33. PubMed ID: 8977476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The involvement of ATP-sensitive potassium channels in beta 2-adrenoceptor agonist-induced vasodilatation on rat diaphragmatic microcirculation.
    Chang HY
    Br J Pharmacol; 1997 Jul; 121(5):1024-30. PubMed ID: 9222563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requisite roles of A2A receptors, nitric oxide, and KATP channels in retinal arteriolar dilation in response to adenosine.
    Hein TW; Yuan Z; Rosa RH; Kuo L
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2113-9. PubMed ID: 15914631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels.
    Hein TW; Xu W; Kuo L
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of adenosine-triphosphate-sensitive potassium channels in the mechanical responses of agonist-stimulated isolated porcine coronary arteries.
    Nguyen DH
    Arzneimittelforschung; 1997 Dec; 47(12):1351-8. PubMed ID: 9450163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative effects of continuous warm blood and intermittent cold blood cardioplegia on coronary reactivity.
    Tofukuji M; Stamler A; Li J; Hariawala MD; Franklin A; Sellke FW
    Ann Thorac Surg; 1997 Nov; 64(5):1360-7. PubMed ID: 9386705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels.
    Hein TW; Belardinelli L; Kuo L
    J Pharmacol Exp Ther; 1999 Nov; 291(2):655-64. PubMed ID: 10525085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of hyperoxia-induced reductions in retinal blood flow in newborn pig.
    Zhu Y; Park TS; Gidday JM
    Exp Eye Res; 1998 Sep; 67(3):357-69. PubMed ID: 9778417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes.
    Clapp LH
    Cardiovasc Res; 1995 Sep; 30(3):460-8. PubMed ID: 7585838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers.
    Venkateswarlu K; Giraldi A; Zhao W; Wang HZ; Melman A; Spektor M; Christ GJ
    J Urol; 2002 Jul; 168(1):355-61. PubMed ID: 12050569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible involvement of ATP-sensitive K+ channels in the relaxant response of dog middle cerebral artery to cromakalim.
    Masuzawa K; Asano M; Matsuda T; Imaizumi Y; Watanabe M
    J Pharmacol Exp Ther; 1990 Nov; 255(2):818-25. PubMed ID: 2123008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine-mediated autoregulation of retinal arteriolar tone in the piglet.
    Gidday JM; Park TS
    Invest Ophthalmol Vis Sci; 1993 Aug; 34(9):2713-9. PubMed ID: 8344793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of ATP-sensitive K+ channels in relaxation of penile resistance arteries.
    Ruiz Rubio JL; Hernández M; Rivera de los Arcos L; Benedito S; Recio P; García P; García-Sacristán A; Prieto D
    Urology; 2004 Apr; 63(4):800-5. PubMed ID: 15072915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channel blockade and halothane vasodilation in conducting and resistance coronary arteries.
    Larach DR; Schuler HG
    J Pharmacol Exp Ther; 1993 Oct; 267(1):72-81. PubMed ID: 8229789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of adenosine on optic nerve head circulation in rabbits.
    Hirao M; Oku H; Goto W; Sugiyama T; Kobayashi T; Ikeda T
    Exp Eye Res; 2004 Nov; 79(5):729-35. PubMed ID: 15500831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of prostaglandin E1 on vascular ATP-sensitive potassium channels.
    Eguchi S; Kawano T; Yinhua ; Tanaka K; Yasui S; Mawatari K; Takahashi A; Nakaya Y; Oshita S; Nakajo N
    J Cardiovasc Pharmacol; 2007 Dec; 50(6):686-91. PubMed ID: 18091586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KATP channels contribute to beta- and adenosine receptor-mediated pulmonary vasorelaxation.
    Sheridan BC; McIntyre RC; Meldrum DR; Fullerton DA
    Am J Physiol; 1997 Nov; 273(5):L950-6. PubMed ID: 9374721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockade of adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced coronary artery vasodilation.
    Cason BA; Shubayev I; Hickey RF
    Anesthesiology; 1994 Nov; 81(5):1245-55; discussion 27A-28A. PubMed ID: 7978484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arteriolar tone is determined by activity of ATP-sensitive potassium channels.
    Jackson WF
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1797-803. PubMed ID: 8238593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.