These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 8977479)
1. Comparison of psychophysical and electrophysiological testing in early glaucoma. Graham SL; Drance SM; Chauhan BC; Swindale NV; Hnik P; Mikelberg FS; Douglas GR Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2651-62. PubMed ID: 8977479 [TBL] [Abstract][Full Text] [Related]
2. [Synopsis of various electrophysiological tests in early glaucoma diagnosis--temporal and spatiotemporal contrast sensitivity, light- and color-contrast pattern-reversal electroretinogram, blue-yellow VEP]. Korth MJ; Jünemann AM; Horn FK; Bergua A; Cursiefen C; Velten I; Budde WM; Wisse M; Martus P Klin Monbl Augenheilkd; 2000 Jun; 216(6):360-8. PubMed ID: 10919115 [TBL] [Abstract][Full Text] [Related]
3. Which method of flicker perimetry is most effective for detection of glaucomatous visual field loss? Yoshiyama KK; Johnson CA Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2270-7. PubMed ID: 9344350 [TBL] [Abstract][Full Text] [Related]
4. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? Ferreras A; Polo V; Larrosa JM; Pablo LE; Pajarin AB; Pueyo V; Honrubia FM J Glaucoma; 2007; 16(4):372-83. PubMed ID: 17571000 [TBL] [Abstract][Full Text] [Related]
5. Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey Matrix. Matsumoto C; Takada S; Okuyama S; Arimura E; Hashimoto S; Shimomura Y Acta Ophthalmol Scand; 2006 Apr; 84(2):210-5. PubMed ID: 16637839 [TBL] [Abstract][Full Text] [Related]
6. Discriminating ability of Humphrey matrix perimetry in early glaucoma patients. Hong S; Chung W; Hong YJ; Seong GJ Ophthalmologica; 2007; 221(3):195-9. PubMed ID: 17440283 [TBL] [Abstract][Full Text] [Related]
7. Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma. Leeprechanon N; Giaconi JA; Manassakorn A; Hoffman D; Caprioli J Ophthalmology; 2007 May; 114(5):931-7. PubMed ID: 17397926 [TBL] [Abstract][Full Text] [Related]
8. Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT. Nomoto H; Matsumoto C; Takada S; Hashimoto S; Arimura E; Okuyama S; Shimomura Y J Glaucoma; 2009 Feb; 18(2):165-71. PubMed ID: 19225357 [TBL] [Abstract][Full Text] [Related]
9. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Sample PA; Bosworth CF; Blumenthal EZ; Girkin C; Weinreb RN Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1783-90. PubMed ID: 10845599 [TBL] [Abstract][Full Text] [Related]
10. Multivariate approach for quantification of morphologic and functional damage in glaucoma. Martus P; Jünemann A; Wisse M; Budde WM; Horn F; Korth M; Jonas JB Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1099-110. PubMed ID: 10752947 [TBL] [Abstract][Full Text] [Related]
11. Humphrey matrix frequency doubling perimetry for detection of visual-field defects in open-angle glaucoma. Clement CI; Goldberg I; Healey PR; Graham S Br J Ophthalmol; 2009 May; 93(5):582-8. PubMed ID: 18669543 [TBL] [Abstract][Full Text] [Related]
12. Frequency doubling technology perimetry in open-angle glaucoma eyes with hemifield visual field damage: comparison of high-tension and normal-tension groups. Murata H; Tomidokoro A; Matsuo H; Tomita G; Araie M J Glaucoma; 2007 Jan; 16(1):9-13. PubMed ID: 17224743 [TBL] [Abstract][Full Text] [Related]
13. Frequency-doubling perimetry: comparison with standard automated perimetry to detect glaucoma. Leeprechanon N; Giangiacomo A; Fontana H; Hoffman D; Caprioli J Am J Ophthalmol; 2007 Feb; 143(2):263-271. PubMed ID: 17178091 [TBL] [Abstract][Full Text] [Related]
14. Comparing a parallel PERG, automated perimetry, and frequency-doubling thresholds. Maddess T; James AC; Goldberg I; Wine S; Dobinson J Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3827-32. PubMed ID: 11053282 [TBL] [Abstract][Full Text] [Related]
15. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects. Kook MS; Cho HS; Seong M; Choi J Ophthalmology; 2005 Nov; 112(11):1970-8. PubMed ID: 16185765 [TBL] [Abstract][Full Text] [Related]
16. Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography. Hong S; Ahn H; Ha SJ; Yeom HY; Seong GJ; Hong YJ Ophthalmology; 2007 Feb; 114(2):210-5. PubMed ID: 17270671 [TBL] [Abstract][Full Text] [Related]
17. Screening for glaucomatous visual field loss with frequency-doubling perimetry. Johnson CA; Samuels SJ Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):413-25. PubMed ID: 9040475 [TBL] [Abstract][Full Text] [Related]
18. A multivariate sensory model in glaucoma diagnosis. Martus P; Korth M; Horn F; Jünemann A; Wisse M; Jonas JB Invest Ophthalmol Vis Sci; 1998 Aug; 39(9):1567-74. PubMed ID: 9699546 [TBL] [Abstract][Full Text] [Related]
19. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Parisi V; Miglior S; Manni G; Centofanti M; Bucci MG Ophthalmology; 2006 Feb; 113(2):216-28. PubMed ID: 16406535 [TBL] [Abstract][Full Text] [Related]
20. Glaucoma detection with frequency doubling perimetry and short-wavelength perimetry. Horn FK; Brenning A; Jünemann AG; Lausen B J Glaucoma; 2007; 16(4):363-71. PubMed ID: 17570999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]