These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8978647)

  • 1. Fretting corrosion resistance and fretting corrosion product cytocompatibility of ferritic stainless steel.
    Xulin S; Ito A; Tateishi T; Hoshino A
    J Biomed Mater Res; 1997 Jan; 34(1):9-14. PubMed ID: 8978647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation.
    Liu Y; Zhu D; Pierre D; Gilbert JL
    Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.
    Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel.
    Nie FL; Wang SG; Wang YB; Wei SC; Zheng YF
    Dent Mater; 2011 Jul; 27(7):677-83. PubMed ID: 21514955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fretting corrosion in orthopaedic alloys.
    Cook SD; Gianoli GJ; Clemow AJ; Haddad RJ
    Biomater Med Devices Artif Organs; 1983-1984; 11(4):281-92. PubMed ID: 6679798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material dependent fretting corrosion in spinal fusion devices: Evaluation of onset and long-term response.
    Singh V; Shorez JP; Mali SA; Hallab NJ; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2858-2868. PubMed ID: 29322629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical corrosion of metallic biomaterials.
    Pourbaix M
    Biomaterials; 1984 May; 5(3):122-34. PubMed ID: 6375748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell association of fretting corrosion products generated in a cell culture.
    Merritt K; Wenz L; Brown SA
    J Orthop Res; 1991 Mar; 9(2):289-96. PubMed ID: 1992077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of proteins and pH on fretting corrosion and metal ion release.
    Merritt K; Brown SA
    J Biomed Mater Res; 1988 Feb; 22(2):111-20. PubMed ID: 2451675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro.
    Barrett RD; Bishara SE; Quinn JK
    Am J Orthod Dentofacial Orthop; 1993 Jan; 103(1):8-14. PubMed ID: 8422037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative corrosion study of "Ni-free" austenitic stainless steels in view of medical applications.
    Reclaru L; Ziegenhagen R; Eschler PY; Blatter A; Lemaître J
    Acta Biomater; 2006 Jul; 2(4):433-44. PubMed ID: 16765883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion behavior of 2205 duplex stainless steel.
    Platt JA; Guzman A; Zuccari A; Thornburg DW; Rhodes BF; Oshida Y; Moore BK
    Am J Orthod Dentofacial Orthop; 1997 Jul; 112(1):69-79. PubMed ID: 9228844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fretting crevice corrosion of stainless steel stem-CoCr femoral head connections: comparisons of materials, initial moisture, and offset length.
    Gilbert JL; Mehta M; Pinder B
    J Biomed Mater Res B Appl Biomater; 2009 Jan; 88(1):162-73. PubMed ID: 18613095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of in vivo corrosion of 316L stainless steel posterior thoracolumbar plate systems: a retrieval study.
    Majid K; Crowder T; Baker E; Baker K; Koueiter D; Shields E; Herkowitz HN
    J Spinal Disord Tech; 2011 Dec; 24(8):500-5. PubMed ID: 21336173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro studies of fretting corrosion of orthopaedic materials.
    Brown SA; Hughes PJ; Merritt K
    J Orthop Res; 1988; 6(4):572-9. PubMed ID: 3379510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride.
    Hai K; Sawase T; Matsumura H; Atsuta M; Baba K; Hatada R
    J Oral Rehabil; 2000 Apr; 27(4):361-6. PubMed ID: 10792599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical studies on the influence of proteins on the corrosion of implant alloys.
    Williams RL; Brown SA; Merritt K
    Biomaterials; 1988 Mar; 9(2):181-6. PubMed ID: 3370285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.
    Kim H; Johnson JW
    Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.
    Mali SA; Singh V; Gilbert JL
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1169-1177. PubMed ID: 27038431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.