These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 8978691)
1. Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals. Kadowaki K; Kubo N; Ozawa K; Hirai A EMBO J; 1996 Dec; 15(23):6652-61. PubMed ID: 8978691 [TBL] [Abstract][Full Text] [Related]
2. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Notsu Y; Masood S; Nishikawa T; Kubo N; Akiduki G; Nakazono M; Hirai A; Kadowaki K Mol Genet Genomics; 2002 Dec; 268(4):434-45. PubMed ID: 12471441 [TBL] [Abstract][Full Text] [Related]
3. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Ueda M; Nishikawa T; Fujimoto M; Takanashi H; Arimura S; Tsutsumi N; Kadowaki K Mol Biol Evol; 2008 Aug; 25(8):1566-75. PubMed ID: 18453549 [TBL] [Abstract][Full Text] [Related]
4. Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants. Boutry M; Nagy F; Poulsen C; Aoyagi K; Chua NH Nature; 1987 Jul 23-29; 328(6128):340-2. PubMed ID: 3474528 [TBL] [Abstract][Full Text] [Related]
5. The presequence of a precursor to the delta-subunit of sweet potato mitochondrial F1ATPase is not sufficient for the transport of beta-glucuronidase (GUS) into mitochondria of tobacco, rice and yeast cells. Kimura T; Takeda S; Kyozuka J; Asahi T; Shimamoto K; Nakamura K Plant Cell Physiol; 1993 Mar; 34(2):345-55. PubMed ID: 8199776 [TBL] [Abstract][Full Text] [Related]
6. Presence of a latent mitochondrial targeting signal in gene on mitochondrial genome. Ueda M; Fujimoto M; Arimura S; Tsutsumi N; Kadowaki K Mol Biol Evol; 2008 Sep; 25(9):1791-3. PubMed ID: 18573842 [TBL] [Abstract][Full Text] [Related]
7. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Adams KL; Daley DO; Qiu YL; Whelan J; Palmer JD Nature; 2000 Nov; 408(6810):354-7. PubMed ID: 11099041 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus. Liu SL; Zhuang Y; Zhang P; Adams KL Mol Biol Evol; 2009 Apr; 26(4):875-91. PubMed ID: 19168566 [TBL] [Abstract][Full Text] [Related]
9. Evidence for transit peptide acquisition through duplication and subsequent frameshift mutation of a preexisting protein gene in rice. Ueda M; Fujimoto M; Arimura S; Tsutsumi N; Kadowaki K Mol Biol Evol; 2006 Dec; 23(12):2405-12. PubMed ID: 16971692 [TBL] [Abstract][Full Text] [Related]
10. The nuclear-encoded SDH2-RPS14 precursor is proteolytically processed between SDH2 and RPS14 to generate maize mitochondrial RPS14. Figueroa P; Holuigue L; Araya A; Jordana X Biochem Biophys Res Commun; 2000 May; 271(2):380-5. PubMed ID: 10799306 [TBL] [Abstract][Full Text] [Related]
11. Loss of the mitochondrial cox2 intron 1 in a family of monocotyledonous plants and utilization of mitochondrial intron sequences for the construction of a nuclear intron. Kudla J; Albertazzi FJ; Blazević D; Hermann M; Bock R Mol Genet Genomics; 2002 Apr; 267(2):223-30. PubMed ID: 11976966 [TBL] [Abstract][Full Text] [Related]
12. Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10. Murcha MW; Rudhe C; Elhafez D; Adams KL; Daley DO; Whelan J Plant Physiol; 2005 Aug; 138(4):2134-44. PubMed ID: 16040655 [TBL] [Abstract][Full Text] [Related]
13. Evolutionary aspects of a unique internal mitochondrial targeting signal in nuclear-migrated rps19 of sugar beet (Beta vulgaris L.). Matsunaga M; Takahashi Y; Yui-Kurino R; Mikami T; Kubo T Gene; 2013 Mar; 517(1):19-26. PubMed ID: 23305819 [TBL] [Abstract][Full Text] [Related]
14. Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Groth-Malonek M; Wahrmund U; Polsakiewicz M; Knoop V Mol Biol Evol; 2007 Apr; 24(4):1068-74. PubMed ID: 17283365 [TBL] [Abstract][Full Text] [Related]
15. The path to RNA editing in plant mitochondria: the Halifax chapter. Gray MW IUBMB Life; 2009 Dec; 61(12):1114-7. PubMed ID: 19946899 [TBL] [Abstract][Full Text] [Related]
16. Computational analysis of RNA editing sites in plant mitochondrial genomes reveals similar information content and a sporadic distribution of editing sites. Mulligan RM; Chang KL; Chou CC Mol Biol Evol; 2007 Sep; 24(9):1971-81. PubMed ID: 17591603 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. Cheng TL; Liao CC; Tsai WH; Lin CC; Yeh CW; Teng CF; Chang WT J Cell Biochem; 2009 Aug; 107(5):1002-15. PubMed ID: 19479947 [TBL] [Abstract][Full Text] [Related]
18. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes? Wu W; Schmidt TR; Goodman M; Grossman LI Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942 [TBL] [Abstract][Full Text] [Related]
19. A partially deleted mitochondrial cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize. Lauer M; Knudsen C; Newton KJ; Gabay-Laughnan S; Laughnan JR New Biol; 1990 Feb; 2(2):179-86. PubMed ID: 1964592 [TBL] [Abstract][Full Text] [Related]
20. The nuclear gene for subunit Vc of sweet potato cytochrome c oxidase. Nakagawa T; Maeshima M; Nakamura K; Asahi T Plant Cell Physiol; 1993 Jun; 34(4):621-6. PubMed ID: 8025826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]