These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8978720)

  • 1. Inhibitors of histamine methylation in brain promote formation of imidazoleacetic acid, which interacts with GABA receptors.
    Prell GD; Morrishow AM; Duoyon E; Lee WS
    J Neurochem; 1997 Jan; 68(1):142-51. PubMed ID: 8978720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disposition of histamine, its metabolites, and pros-methylimidazoleacetic acid in brain regions of rats chronically infused with alpha-fluoromethylhistidine.
    Prell GD; Douyon E; Sawyer WF; Morrishow AM
    J Neurochem; 1996 May; 66(5):2153-9. PubMed ID: 8780048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imidazoleacetic acid, a gamma-aminobutyric acid receptor agonist, can be formed in rat brain by oxidation of histamine.
    Thomas B; Prell GD
    J Neurochem; 1995 Aug; 65(2):818-26. PubMed ID: 7616240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of brain histamine metabolism by metoprine.
    Hough LB; Khandelwal JK; Green JP
    Biochem Pharmacol; 1986 Jan; 35(2):307-10. PubMed ID: 3942601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the rat brain histamine content following metoprine and other histamine-methyltransferase (HMT) inhibitors.
    Zawilska J; Nowak JZ
    Pol J Pharmacol Pharm; 1985; 37(6):821-30. PubMed ID: 3832018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 9-Amino-1,2,3,4-tetrahydroacridine is a potent inhibitor of histamine N-methyltransferase.
    Nishibori M; Oishi R; Itoh Y; Saeki K
    Jpn J Pharmacol; 1991 Apr; 55(4):539-46. PubMed ID: 1886293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of a precursor-product relationship between histamine and its metabolites in brain after histidine loading.
    Prell GD; Hough LB; Khandelwal J; Green JP
    J Neurochem; 1996 Nov; 67(5):1938-44. PubMed ID: 8863498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional distribution of the histamine metabolite, tele-methylimidazoleacetic acid, in rat brain: effects of pargyline and probenecid.
    Khandelwal JK; Hough LB; Green JP
    J Neurochem; 1984 Feb; 42(2):519-22. PubMed ID: 6693885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pros-methylimidazoleacetic acid in rat brain: its regional distribution and relationship to metabolic pathways of histamine.
    Prell GD; Khandelwal JK; Hough LB; Green JP
    J Neurochem; 1989 Feb; 52(2):561-7. PubMed ID: 2911030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of rat brain histamine-N-methyltransferase by 9-amino-1,2,3,4-tetrahydroacridine (THA).
    Cumming P; Reiner PB; Vincent SR
    Biochem Pharmacol; 1990 Sep; 40(6):1345-50. PubMed ID: 2403387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metoprine, an inhibitor of histamine N-methyltransferase but not catechol-O-methyltransferase, suppresses feeding in sated and in food deprived rats.
    Lecklin A; Tuomisto L; MacDonald E
    Methods Find Exp Clin Pharmacol; 1995; 17(1):47-52. PubMed ID: 7542717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac and regional haemodynamic effects of histamine N-methyltransferase inhibitor metoprine in haemorrhage-shocked rats.
    Jochem J
    Inflamm Res; 2004 Jul; 53(7):316-23. PubMed ID: 15241567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actions of the brain-penetrating H2-antagonist zolantidine on histamine dynamics and metabolism in rat brain.
    Hough LB; Jackowski S; Eberle N; Gogas KR; Camarota NA; Cue D
    Biochem Pharmacol; 1988 Dec; 37(24):4707-11. PubMed ID: 3202904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-methylhistamine methylation by histamine methyltransferase.
    Hough LB; Khandelwal JK; Mittag TW
    Agents Actions; 1981 Nov; 11(5):425-8. PubMed ID: 7337069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histamine metabolites in cerebrospinal fluid of the rhesus monkey (Macaca mulatta): cisternal-lumbar concentration gradients.
    Prell GD; Khandelwal JK; Burns RS; Green JP
    J Neurochem; 1988 Apr; 50(4):1194-9. PubMed ID: 3258017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the histamine H3-agonist (R)-alpha-methylhistamine and the antagonist thioperamide on histamine metabolism in the mouse and rat brain.
    Oishi R; Itoh Y; Nishibori M; Saeki K
    J Neurochem; 1989 May; 52(5):1388-92. PubMed ID: 2540269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal fluctuation in levels of histamine metabolites in cerebrospinal fluid of rhesus monkey.
    Prell GD; Khandelwal JK; Burns RS; Green JP
    Agents Actions; 1989 Mar; 26(3-4):279-86. PubMed ID: 2735223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rostral-caudal concentration gradients of histamine metabolites in human cerebrospinal fluid.
    Prell GD; Khandelwal JK; LeWitt PA; Green JP
    Agents Actions; 1989 Mar; 26(3-4):267-72. PubMed ID: 2735222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of selected histamine H3 receptor antagonists on tele-methylhistamine levels in rat cerebral cortex.
    Yates SL; Tedford CE; Gregory R; Pawlowski GP; Handley MK; Boyd DL; Hough LB
    Biochem Pharmacol; 1999 May; 57(9):1059-66. PubMed ID: 10796076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of histamine in rodent antinociception.
    Malmberg-Aiello P; Lamberti C; Ghelardini C; Giotti A; Bartolini A
    Br J Pharmacol; 1994 Apr; 111(4):1269-79. PubMed ID: 8032614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.