These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 8979343)
21. Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments. Han YJ; Song H; Lee CW; Ly NH; Joo SW; Lee JH; Kim SJ; Park S Int J Biol Macromol; 2017 Jan; 94(Pt A):634-641. PubMed ID: 27773839 [TBL] [Abstract][Full Text] [Related]
22. Nitrogen availability to Pseudomonas fluorescens DF57 is limited during decomposition of barley straw in bulk soil and in the barley rhizosphere. Jensen LE; Nybroe O Appl Environ Microbiol; 1999 Oct; 65(10):4320-8. PubMed ID: 10508054 [TBL] [Abstract][Full Text] [Related]
23. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
24. The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. Lim CK; Hassan KA; Tetu SG; Loper JE; Paulsen IT PLoS One; 2012; 7(6):e39139. PubMed ID: 22723948 [TBL] [Abstract][Full Text] [Related]
25. Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2,4-diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens. Almario J; Prigent-Combaret C; Muller D; Moënne-Loccoz Y Mol Plant Microbe Interact; 2013 May; 26(5):566-74. PubMed ID: 23405868 [TBL] [Abstract][Full Text] [Related]
26. Cold requirement for maximal activity of the bacterial ice nucleation protein INAZ in transgenic plants. van Zee K; Baertlein DA; Lindow SE; Panopoulas N; Chen TH Plant Mol Biol; 1996 Jan; 30(1):207-11. PubMed ID: 8616239 [TBL] [Abstract][Full Text] [Related]
28. Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. DeAngelis KM; Ji P; Firestone MK; Lindow SE Appl Environ Microbiol; 2005 Dec; 71(12):8537-47. PubMed ID: 16332845 [TBL] [Abstract][Full Text] [Related]
29. Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Nielsen TH; Sørensen J Appl Environ Microbiol; 2003 Feb; 69(2):861-8. PubMed ID: 12571005 [TBL] [Abstract][Full Text] [Related]
30. Quantification of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the plant rhizosphere by real-time PCR. Mavrodi OV; Mavrodi DV; Thomashow LS; Weller DM Appl Environ Microbiol; 2007 Sep; 73(17):5531-8. PubMed ID: 17630311 [TBL] [Abstract][Full Text] [Related]
31. [Effects of soil factors on root colonization of wheat by luxAB genes-marked Pseudomonas fluorescens Xl6L2]. Wang P; Hu Z; Li F Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):312-7. PubMed ID: 12548998 [TBL] [Abstract][Full Text] [Related]
32. Carbon deposition in soil rhizosphere following amendments with compost and its soluble fractions, as evaluated by combined soil-plant rhizobox and reporter gene systems. Puglisi E; Fragoulis G; Del Re AA; Spaccini R; Piccolo A; Gigliotti G; Said-Pullicino D; Trevisan M Chemosphere; 2008 Nov; 73(8):1292-9. PubMed ID: 18768204 [TBL] [Abstract][Full Text] [Related]
33. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Yee DC; Maynard JA; Wood TK Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067 [TBL] [Abstract][Full Text] [Related]
34. Impact of biocontrol agents Pseudomonas fluorescens CHA0 and its genetically modified derivatives on the diversity of culturable fungi in the rhizosphere of mungbean. Shaukat SS; Siddiqui IA J Appl Microbiol; 2003; 95(5):1039-48. PubMed ID: 14633033 [TBL] [Abstract][Full Text] [Related]
35. The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. de Cárcer DA; Martín M; Mackova M; Macek T; Karlson U; Rivilla R ISME J; 2007 Jul; 1(3):215-23. PubMed ID: 18043632 [TBL] [Abstract][Full Text] [Related]
36. Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis. Vanderveer TL; Choi J; Miao D; Walker VK Cryobiology; 2014 Aug; 69(1):110-8. PubMed ID: 24930584 [TBL] [Abstract][Full Text] [Related]
37. Fluorescent pseudomonads in the rhizosphere of plants and their relation to root exudates. Vancura V Folia Microbiol (Praha); 1980; 25(2):168-73. PubMed ID: 6769769 [TBL] [Abstract][Full Text] [Related]
38. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. Gao G; Yin D; Chen S; Xia F; Yang J; Li Q; Wang W PLoS One; 2012; 7(2):e31806. PubMed ID: 22359632 [TBL] [Abstract][Full Text] [Related]
39. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Laville J; Blumer C; Von Schroetter C; Gaia V; Défago G; Keel C; Haas D J Bacteriol; 1998 Jun; 180(12):3187-96. PubMed ID: 9620970 [TBL] [Abstract][Full Text] [Related]
40. Biological sensor for sucrose availability: relative sensitivities of various reporter genes. Miller WG; Brandl MT; Quiñones B; Lindow SE Appl Environ Microbiol; 2001 Mar; 67(3):1308-17. PubMed ID: 11229926 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]