BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 8979347)

  • 1. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae.
    Björkqvist S; Ansell R; Adler L; Lidén G
    Appl Environ Microbiol; 1997 Jan; 63(1):128-32. PubMed ID: 8979347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation.
    Ansell R; Granath K; Hohmann S; Thevelein JM; Adler L
    EMBO J; 1997 May; 16(9):2179-87. PubMed ID: 9171333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae.
    Valadi H; Larsson C; Gustafsson L
    Appl Microbiol Biotechnol; 1998 Oct; 50(4):434-9. PubMed ID: 9830094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microaerobic glycerol formation in Saccharomyces cerevisiae.
    Costenoble R; Valadi H; Gustafsson L; Niklasson C; Franzén CJ
    Yeast; 2000 Dec; 16(16):1483-95. PubMed ID: 11113971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH
    J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway.
    Remize F; Cambon B; Barnavon L; Dequin S
    Yeast; 2003 Nov; 20(15):1243-53. PubMed ID: 14618562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1).
    Valadi H; Valadi A; Ansell R; Gustafsson L; Adler L; Norbeck J; Blomberg A
    Curr Genet; 2004 Feb; 45(2):90-5. PubMed ID: 14652693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae.
    Hubmann G; Guillouet S; Nevoigt E
    Appl Environ Microbiol; 2011 Sep; 77(17):5857-67. PubMed ID: 21724879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production.
    Valadi A; Granath K; Gustafsson L; Adler L
    J Biol Chem; 2004 Sep; 279(38):39677-85. PubMed ID: 15210723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway.
    Albertyn J; Hohmann S; Thevelein JM; Prior BA
    Mol Cell Biol; 1994 Jun; 14(6):4135-44. PubMed ID: 8196651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.
    Guadalupe-Medina V; Metz B; Oud B; van Der Graaf CM; Mans R; Pronk JT; van Maris AJ
    Microb Biotechnol; 2014 Jan; 7(1):44-53. PubMed ID: 24004455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A glycerol-3-phosphate dehydrogenase-deficient mutant of Saccharomyces cerevisiae expressing the heterologous XYL1 gene.
    Lidén G; Walfridsson M; Ansell R; Anderlund M; Adler L; Hahn-Hägerdal B
    Appl Environ Microbiol; 1996 Oct; 62(10):3894-6. PubMed ID: 8837449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.
    Pagliardini J; Hubmann G; Alfenore S; Nevoigt E; Bideaux C; Guillouet SE
    Microb Cell Fact; 2013 Mar; 12():29. PubMed ID: 23537043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast.
    Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):935-43. PubMed ID: 20824484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol.
    González E; Fernández MR; Marco D; Calam E; Sumoy L; Parés X; Dequin S; Biosca JA
    Appl Environ Microbiol; 2010 Feb; 76(3):670-9. PubMed ID: 19966022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of iron limitation on glycerol production and expression of the isogenes for NAD(+)-dependent glycerol 3-phosphate dehydrogenase in Saccharomyces cerevisiae.
    Ansell R; Adler L
    FEBS Lett; 1999 Nov; 461(3):173-7. PubMed ID: 10567692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.