These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 8979348)
1. Influence of invertase activity and glycerol synthesis and retention on fermentation of media with a high sugar concentration by Saccharomyces cerevisiae. Myers DK; Lawlor DT; Attfield PV Appl Environ Microbiol; 1997 Jan; 63(1):145-50. PubMed ID: 8979348 [TBL] [Abstract][Full Text] [Related]
2. Hyperosmotic stress response by strains of bakers' yeasts in high sugar concentration medium. Attfield PV; Kletsas S Lett Appl Microbiol; 2000 Oct; 31(4):323-7. PubMed ID: 11068916 [TBL] [Abstract][Full Text] [Related]
3. Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Dynesen J; Smits HP; Olsson L; Nielsen J Appl Microbiol Biotechnol; 1998 Nov; 50(5):579-82. PubMed ID: 9866176 [TBL] [Abstract][Full Text] [Related]
4. Production of extracellular and total invertase by Candida utilis, Saccharomyces cerevisiae, and other yeasts. DWORSCHACK RG; WICKERHAM LJ Appl Microbiol; 1961 Jul; 9(4):291-4. PubMed ID: 13725351 [TBL] [Abstract][Full Text] [Related]
5. Leavening ability of baker's yeast exposed to hyperosmotic media. Hirasawa R; Yokoigawa K FEMS Microbiol Lett; 2001 Jan; 194(2):159-62. PubMed ID: 11164301 [TBL] [Abstract][Full Text] [Related]
6. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. De Winde JH; Crauwels M; Hohmann S; Thevelein JM; Winderickx J Eur J Biochem; 1996 Oct; 241(2):633-43. PubMed ID: 8917466 [TBL] [Abstract][Full Text] [Related]
7. ENZYME REACTIONS IN STRUCTURALLY RESTRICTED SYSTEMS V. FURTHER OBSERVATIONS ON THE KINETICS OF YEAST BETA-FRUCTOFURANOSIDASE (INVERTASE) ACTIVITY IN VISCOUS MEDIA. RUCHTI J; MCLAREN AD Enzymologia; 1964 Aug; 27():185-98. PubMed ID: 14202652 [No Abstract] [Full Text] [Related]
8. Protein engineering of invertase for enhancing yeast dough fermentation under high-sucrose conditions. Zhao Y; Meng K; Fu J; Xu S; Cai G; Meng G; Nielsen J; Liu Z; Zhang Y Folia Microbiol (Praha); 2023 Apr; 68(2):207-217. PubMed ID: 36201138 [TBL] [Abstract][Full Text] [Related]
9. A strategic study using mutant-strain entrapment in calcium alginate for the production of Saccharomyces cerevisiae cells with high invertase activity. Rossi-Alva JC; Rocha-Leão MH Biotechnol Appl Biochem; 2003 Aug; 38(Pt 1):43-51. PubMed ID: 12605600 [TBL] [Abstract][Full Text] [Related]
10. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains. Hernandez-Lopez MJ; Prieto JA; Randez-Gil F Antonie Van Leeuwenhoek; 2003; 84(2):125-34. PubMed ID: 14533716 [TBL] [Abstract][Full Text] [Related]
11. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301 [TBL] [Abstract][Full Text] [Related]
12. Effect of pH, aeration and sucrose feeding on the invertase activity of intact S. cerevisiae cells grown in sugarcane blackstrap molasses. Vitolo M; Duranti MA; Pellegrim MB J Ind Microbiol; 1995 Aug; 15(2):75-9. PubMed ID: 7576463 [TBL] [Abstract][Full Text] [Related]
13. Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Bell PJ; Higgins VJ; Attfield PV Lett Appl Microbiol; 2001 Apr; 32(4):224-9. PubMed ID: 11298930 [TBL] [Abstract][Full Text] [Related]
14. Microbial water relations: features of the intracellular composition of sugar-tolerant yeasts. Brown AD J Bacteriol; 1974 Jun; 118(3):769-77. PubMed ID: 4598001 [TBL] [Abstract][Full Text] [Related]
15. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. Aslankoohi E; Rezaei MN; Vervoort Y; Courtin CM; Verstrepen KJ PLoS One; 2015; 10(3):e0119364. PubMed ID: 25764309 [TBL] [Abstract][Full Text] [Related]
16. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Jain VK; Divol B; Prior BA; Bauer FF Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823 [TBL] [Abstract][Full Text] [Related]
17. Influence of carbon catabolite repression on the G1 arrest of Saccharomyces cerevisiae MATa cells by alpha factor. Ruíz T; Villanueva JR; Rodríguez L J Gen Microbiol; 1984 Feb; 130(2):337-42. PubMed ID: 6374021 [TBL] [Abstract][Full Text] [Related]
19. [Invertase Overproduction May Provide for Inulin Fermentation by Selection Strains of Saccharomyces cerevisiae]. Naumov GI; Naumova ES Mikrobiologiia; 2015; 84(2):160-4. PubMed ID: 26263621 [TBL] [Abstract][Full Text] [Related]
20. Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations. Struyf N; Laurent J; Lefevere B; Verspreet J; Verstrepen KJ; Courtin CM Food Chem; 2017 Mar; 218():89-98. PubMed ID: 27719961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]