These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8979367)

  • 1. Albumin can reverse the release of potassium from human erythrocytes treated with the non-ionic detergent, Brij 58.
    Bogner P; Wheatley DN; Borbély C; Miseta A
    Cell Biol Int; 1996 Nov; 20(11):741-9. PubMed ID: 8979367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects and mechanisms of action of ionophorous antibiotics valinomycin and salinomycin-Na on Babesia gibsoni in vitro.
    Yamasaki M; Nakamura K; Tamura N; Hwang SJ; Yoshikawa M; Sasaki N; Ohta H; Yamato O; Maede Y; Takiguchi M
    J Parasitol; 2009 Dec; 95(6):1532-8. PubMed ID: 20929429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations.
    Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL
    Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of potassium, lipids, and proteins from nonionic detergent treated chicken red blood cells.
    Kellermayer M; Ludány A; Miseta A; Kŏszegi T; Berta G; Bogner P; Hazlewood CF; Cameron IL; Wheatley DN
    J Cell Physiol; 1994 May; 159(2):197-204. PubMed ID: 8163560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of non-lytic concentrations of Brij series detergents on the metabolism-independent ion permeability properties of human erythrocytes.
    Miseta A; Bogner P; Szarka A; Kellermayer M; Galambos C; Wheatley DN; Cameron IL
    Biophys J; 1995 Dec; 69(6):2563-8. PubMed ID: 8599663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release kinetics of ATP in cells exposed to nonionic detergents.
    Köszegi T
    J Biolumin Chemilumin; 1991; 6(3):153-7. PubMed ID: 1746315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ouabain on the breakdown of adenine nucleotides in glucose-depleted nucleated red blood cells. Characterization of ATPase.
    Kaloyianni M; Tsikriktsi O; Tsianopoulou P
    Gen Physiol Biophys; 1998 Jun; 17(2):143-56. PubMed ID: 9785102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explaining on request a correlation between membrane Na,K-ATPase and K+ content in erythrocytes and other findings in the preceding paper.
    Ling GN
    Physiol Chem Phys Med NMR; 1998; 30(1):89-97. PubMed ID: 9807237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effect of chloride on (Na+K) co-transport in human red blood cells.
    Chipperfield AR
    Nature; 1980 Jul; 286(5770):281-2. PubMed ID: 6250053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Relation between energy metabolism, Na+ and K+ levels, and Na,K-ATPase activity in erythrocytes and their volume and shape during overheating].
    Bondarev DP; Kozlov NB
    Vopr Med Khim; 1988; 34(5):87-91. PubMed ID: 2851213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ouabain inhibits the increase due to palytoxin of cation permeability of erythrocytes.
    Habermann E; Chhatwal GS
    Naunyn Schmiedebergs Arch Pharmacol; 1982 May; 319(2):101-7. PubMed ID: 6125898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Increased ouabain-insensitive sodium efflux in leaky red cell membranes of the patients with hereditary spherocytosis].
    Yoshimoto M; Yawata Y
    Nihon Ketsueki Gakkai Zasshi; 1982 May; 45(3):549-54. PubMed ID: 6127856
    [No Abstract]   [Full Text] [Related]  

  • 13. [Na+ and K+ ion transport across the human erythrocyte membrane during the formation of nystatin channels under in-vitro conditions: the characteristics and an analysis of the processes].
    Borisov IuA; Soboleva OIu; Suglobova ED; Fedorovich EE
    Tsitologiia; 1994; 36(5):427-36. PubMed ID: 7809978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism and Na+,K+ redistribution in human erythrocytes treated with lipopolysaccharide endotoxin.
    Wallas CH; Warren JR; Kowalski MM
    Proc Soc Exp Biol Med; 1979 Jul; 161(3):255-9. PubMed ID: 223170
    [No Abstract]   [Full Text] [Related]  

  • 15. Relationship of red blood cell ion transport alterations and serum lipid abnormalities in Lyon genetically hypertensive rats.
    Zicha J; Dobesová Z; Kunes J; Vincent M
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1123-8. PubMed ID: 9365824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance and mobility of hemoglobin and water within the human erythrocyte after detergent disruption of the plasma membrane.
    Cameron IL; Cox LA; Liu XR; Fullerton GD
    J Cell Physiol; 1991 Dec; 149(3):365-74. PubMed ID: 1660478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of K+ channel and inhibition of Na(+)-K+ ATPase of human erythrocytes by cyclosporine: possible role in hyperpotassemia in kidney transplant recipients.
    Ihara H; Hosokawa S; Ogino T; Arima M; Ikoma F
    Transplant Proc; 1990 Aug; 22(4):1736-9. PubMed ID: 2167529
    [No Abstract]   [Full Text] [Related]  

  • 18. Energy and heat production of human erythrocytes in different media.
    de Verdier CH
    Acta Biol Med Ger; 1981; 40(4-5):699-702. PubMed ID: 7315117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP and integrity of human red blood cells.
    Nagy S; Paál M; Kõszegi T; Ludány A; Kellermayer M
    Physiol Chem Phys Med NMR; 1998; 30(2):141-8. PubMed ID: 10197355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state volumes and metabolism-independent osmotic adaptation in mammalian erythrocytes.
    Bogner P; Sipos K; Ludány A; Somogyi B; Miseta A
    Eur Biophys J; 2002 May; 31(2):145-52. PubMed ID: 12012118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.