These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 89794)

  • 1. Polyphosphate- and ATP-glucose phosphotransferase activities of Nocardia minima.
    Szymona O; Szymona M
    Acta Microbiol Pol; 1979; 28(2):153-60. PubMed ID: 89794
    [No Abstract]   [Full Text] [Related]  

  • 2. Initial rate and equilibrium isotope exchange studies on the ATP-dependent activity of polyphosphate Glucokinase from Propionibacterium shermanii.
    Kowalczyk TH; Horn PJ; Pan WH; Phillips NF
    Biochemistry; 1996 May; 35(21):6777-85. PubMed ID: 8639629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of polyphosphate and ATP glucose phosphotransferase from Mycobacterium tuberculosis H37Ra: evidence that poly(P) and ATP glucokinase activities are catalyzed by the same enzyme.
    Hsieh PC; Shenoy BC; Jentoft JE; Phillips NF
    Protein Expr Purif; 1993 Feb; 4(1):76-84. PubMed ID: 8381043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanisms of polyphosphate glucokinase from Mycobacterium tuberculosis.
    Hsieh PC; Kowalczyk TH; Phillips NF
    Biochemistry; 1996 Jul; 35(30):9772-81. PubMed ID: 8703950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Polyphosphate glucokinase activity as a differentiating trait in Actinomycetes].
    Uryson SO; Kulaev IS; Egorova SA; Agre NS
    Mikrobiologiia; 1973; 42(6):1067-71. PubMed ID: 4361094
    [No Abstract]   [Full Text] [Related]  

  • 6. [Polyphosphate kinase activity in yeast vacuoles].
    Shabalin IuA; Vagabov VM; Tsiomenko AB; Zemlenukhina OA; Kulaev IS
    Biokhimiia; 1977 Sep; 42(9):1642-8. PubMed ID: 199287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of ATP, polyphosphate and K+ contents in Saccharomyces carlsbergensis during uptake of Mn2+ and glucose.
    Okorokov LA; Lichko LP; Andreeva NA
    Biochem Int; 1983 Apr; 6(4):481-8. PubMed ID: 6679720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyphosphate-glucose phosphotransferase. Purification of Mycobacterium tuberculosis H37Ra enzyme to apparent homogeneity.
    Szymona M; Kowalska H; Pastuszak I
    Acta Biochim Pol; 1977; 24(2):133-42. PubMed ID: 406755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The polyphosphate- and ATP-dependent glucokinase from Propionibacterium shermanii: both activities are catalyzed by the same protein.
    Phillips NF; Horn PJ; Wood HG
    Arch Biochem Biophys; 1993 Jan; 300(1):309-19. PubMed ID: 8380966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of adenosine 5'-monophosphate by a dialyzed cell-free extract from Escherichia coli.
    Chalykoff P; Yamazaki H
    Can J Biochem; 1978 Aug; 56(8):838-41. PubMed ID: 356939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic properties of Escherichia coli polyphosphate kinase: an enzyme for ATP regeneration.
    Haeusler PA; Dieter L; Rittle KJ; Shepler LS; Paszkowski AL; Moe OA
    Biotechnol Appl Biochem; 1992 Apr; 15(2):125-33. PubMed ID: 1316760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mannoglucokinese of Mycobacterium tuberculosis H37Ra.
    Kowalska H; Pastuszak I; Szymona M
    Acta Microbiol Pol; 1980; 29(3):249-57. PubMed ID: 19852110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [ATP and polyphosphate-dependent bacterial NAD+-kinases].
    Filippovich SIu; Afanas'eva TP; Bachurina GP; Kritskiĭ MS
    Prikl Biokhim Mikrobiol; 2000; 36(2):117-21. PubMed ID: 10779996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilized polyphosphate kinase: preparation, properties, and potential for use in adenosine 5'-triphosphate regeneration.
    Hoffman RC; Wyman PL; Smith LE; Nolt CL; Conley JL; Hevel JM; Warren JP; Reiner GA; Moe OA
    Biotechnol Appl Biochem; 1988 Apr; 10(2):107-17. PubMed ID: 2838045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphosphate kinase from Propionibacterium shermanii. Demonstration that polyphosphates are primers and determination of the size of the synthesized polyphosphate.
    Robinson NA; Clark JE; Wood HG
    J Biol Chem; 1987 Apr; 262(11):5216-22. PubMed ID: 3031044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Polyphosphate and ATP content of Propionibacterium shermanii cells in nitrogen starvation].
    Gaĭtan VI; Vorob'eva LI; Kovrizhnykh VA
    Mikrobiologiia; 1982; 51(5):747-50. PubMed ID: 7176971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the size of polyphosphates with polyphosphate glucokinase.
    Pepin CA; Wood HG; Robinson NA
    Biochem Int; 1986 Jan; 12(1):111-23. PubMed ID: 3004497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphosphate glucokinase from Propionibacterium shermanii. Kinetics and demonstration that the mechanism involves both processive and nonprocessive type reactions.
    Pepin CA; Wood HG
    J Biol Chem; 1986 Apr; 261(10):4476-80. PubMed ID: 3007458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of utilization of polyphosphate by polyphosphate glucokinase from Propionibacterium shermanii.
    Pepin CA; Wood HG
    J Biol Chem; 1987 Apr; 262(11):5223-6. PubMed ID: 3031045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ATP-glucokinase and polyphosphate glucokinase in Streptomyces aureofaciens.
    Hostálek Z; Tobek I; Bobyk MA; Kulayev IS
    Folia Microbiol (Praha); 1976; 21(2):131-8. PubMed ID: 820617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.