These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8979823)

  • 1. Firing characteristics of neurones in the superior colliculus and the pontomedullary reticular formation during orienting in unrestrained cats.
    Sasaki S; Naito K; Oka M
    Prog Brain Res; 1996; 112():99-116. PubMed ID: 8979823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges.
    Munoz DP; Guitton D; Pélisson D
    J Neurophysiol; 1991 Nov; 66(5):1642-66. PubMed ID: 1765799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of neurons in the medial pontomedullary reticular formation during orienting movements in alert head-free cats.
    Isa T; Naito K
    J Neurophysiol; 1995 Jul; 74(1):73-95. PubMed ID: 7472355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. II. Sustained discharges during motor preparation and fixation.
    Munoz DP; Guitton D
    J Neurophysiol; 1991 Nov; 66(5):1624-41. PubMed ID: 1765798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orienting-related eye-neck neurons of the medial ponto-bulbar reticular formation do not participate in horizontal canal-dependent vestibular reflexes of alert cats.
    Kitama T; Grantyn A; Berthoz A
    Brain Res Bull; 1995; 38(4):337-47. PubMed ID: 8535856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In multiple-step gaze shifts: omnipause (OPNs) and collicular fixation neurons encode gaze position error; OPNs gate saccades.
    Bergeron A; Guitton D
    J Neurophysiol; 2002 Oct; 88(4):1726-42. PubMed ID: 12364502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaze-related activity of putative inhibitory burst neurons in the head-free cat.
    Cullen KE; Guitton D; Rey CG; Jiang W
    J Neurophysiol; 1993 Dec; 70(6):2678-83. PubMed ID: 8120607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of slow orienting eye movements by tectoreticulospinal neurons in the cat: behavior, discharge patterns and underlying connections.
    Olivier E; Grantyn A; Chat M; Berthoz A
    Exp Brain Res; 1993; 93(3):435-49. PubMed ID: 8519334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus.
    Cowie RJ; Robinson DL
    J Neurophysiol; 1994 Dec; 72(6):2648-64. PubMed ID: 7897481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge.
    Munoz DP; Wurtz RH
    J Neurophysiol; 1993 Aug; 70(2):559-75. PubMed ID: 8410157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys.
    Pathmanathan JS; Presnell R; Cromer JA; Cullen KE; Waitzman DM
    Exp Brain Res; 2006 Jan; 168(4):455-70. PubMed ID: 16292575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.
    Paré M; Guitton D
    J Neurophysiol; 1998 Jun; 79(6):3060-76. PubMed ID: 9636108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fixation and orientation control by the tecto-reticulo-spinal system in the cat whose head is unrestrained.
    Munoz DP; Guitton D
    Rev Neurol (Paris); 1989; 145(8-9):567-79. PubMed ID: 2554460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. I. Behavioral properties.
    Grantyn A; Berthoz A
    Exp Brain Res; 1987; 66(2):339-54. PubMed ID: 3595779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual responses of neurones in cat superior colliculus in relation to fixation of targets.
    Peck CK
    J Physiol; 1989 Jul; 414():301-15. PubMed ID: 2607434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. I. Identification, localization, and effects of behavior on sensory responses.
    Guitton D; Munoz DP
    J Neurophysiol; 1991 Nov; 66(5):1605-23. PubMed ID: 1765797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control.
    Choi WY; Guitton D
    Neuron; 2006 May; 50(3):491-505. PubMed ID: 16675402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates.
    Stuphorn V; Bauswein E; Hoffmann KP
    J Neurophysiol; 2000 Mar; 83(3):1283-99. PubMed ID: 10712456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal activity related to head and eye movements in cat superior colliculus.
    Peck CK
    J Physiol; 1990 Feb; 421():79-104. PubMed ID: 2348407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.