These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 8980129)
1. Escherichia coli inorganic pyrophosphatase: site-directed mutagenesis of the metal binding sites. Avaeva S; Ignatov P; Kurilova S; Nazarova T; Rodina E; Vorobyeva N; Oganessyan V; Harutyunyan E FEBS Lett; 1996 Dec; 399(1-2):99-102. PubMed ID: 8980129 [TBL] [Abstract][Full Text] [Related]
2. Effect of D42N substitution in Escherichia coli inorganic pyrophosphatase on catalytic activity and Mg2+ binding. Avaeva SM; Rodina EV; Kurilova SA; Nazarova TI; Vorobyeva NN FEBS Lett; 1996 Aug; 392(2):91-4. PubMed ID: 8772181 [TBL] [Abstract][Full Text] [Related]
3. Directed mutagenesis studies of the metal binding site at the subunit interface of Escherichia coli inorganic pyrophosphatase. Efimova IS; Salminen A; Pohjanjoki P; Lapinniemi J; Magretova NN; Cooperman BS; Goldman A; Lahti R; Baykov AA J Biol Chem; 1999 Feb; 274(6):3294-9. PubMed ID: 9920869 [TBL] [Abstract][Full Text] [Related]
4. The role of Asp42 in Escherichia coli inorganic pyrophosphatase functioning. Rodina EV; Vainonen YP; Vorobyeva NN; Kurilova SA; Nazarova TI; Avaeva SM Eur J Biochem; 2001 Jul; 268(13):3851-7. PubMed ID: 11432753 [TBL] [Abstract][Full Text] [Related]
5. Effect of Asp-97-->Glu substitution on the pH dependence of catalysis by inorganic pyrophosphatase of Escherichia coli. Fabrichniy IP; Lahti R; Baykov AA Biochemistry (Mosc); 1997 Sep; 62(9):946-50. PubMed ID: 9457758 [TBL] [Abstract][Full Text] [Related]
7. Engineering a new magnesium binding site in the subunit contact region of Escherichia coli inorganic pyrophosphatase. Parfenyev AN; Salminen A; Baykov AA; Lahti R Biochemistry (Mosc); 2000 Mar; 65(3):388-92. PubMed ID: 10739482 [TBL] [Abstract][Full Text] [Related]
8. Structural and functional consequences of substitutions at the tyrosine 55-lysine 104 hydrogen bond in Escherichia coli inorganic pyrophosphatase. Fabrichniy IP; Kasho VN; Hyytiä T; Salminen T; Halonen P; Dudarenkov VY; Heikinheimo P; Chernyak VY; Goldman A; Lahti R; Cooperman BS; Baykov AA Biochemistry; 1997 Jun; 36(25):7746-53. PubMed ID: 9201916 [TBL] [Abstract][Full Text] [Related]
10. Substitutions of glycine residues Gly100 and Gly147 in conservative loops decrease rates of conformational rearrangements of Escherichia coli inorganic pyrophosphatase. Moiseev VM; Rodina EV; Kurilova SA; Vorobyeva NN; Nazarova TI; Avaeva SM Biochemistry (Mosc); 2005 Aug; 70(8):858-66. PubMed ID: 16212541 [TBL] [Abstract][Full Text] [Related]
11. A hybrid mutant form of Escherichia coli inorganic pyrophosphatase. Velichko IS; Baykov AA Biochemistry (Mosc); 1997 Mar; 62(3):233-6. PubMed ID: 9275296 [TBL] [Abstract][Full Text] [Related]
12. Trimeric inorganic pyrophosphatase of Escherichia coli obtained by directed mutagenesis. Velichko IS; Mikalahti K; Kasho VN; Dudarenkov VY; Hyytiä T; Goldman A; Cooperman BS; Lahti R; Baykov AA Biochemistry; 1998 Jan; 37(2):734-40. PubMed ID: 9425097 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of the enzyme--substrate complex of the mutant Asp-67Asn inorganic pyrophosphatase from Escherichia coli by fluoride ions. Avaeva SM; Velichko TI; Vorobyeva NN; Kurilova SA; Nazarova TI; Sklyankina VA Biochemistry (Mosc); 1999 Feb; 64(2):169-74. PubMed ID: 10187907 [TBL] [Abstract][Full Text] [Related]
14. Structure and function analysis of Escherichia coli inorganic pyrophosphatase: is a hydroxide ion the key to catalysis? Salminen T; Käpylä J; Heikinheimo P; Kankare J; Goldman A; Heinonen J; Baykov AA; Cooperman BS; Lahti R Biochemistry; 1995 Jan; 34(3):782-91. PubMed ID: 7827037 [TBL] [Abstract][Full Text] [Related]
15. [Functionally important lysine residues in inorganic pyrophosphatase from E. coli. I. Interaction of inorganic pyrophosphatase with pyridoxal-5'-phosphate]. Komissarov AA; Shpanchenko OV; Skliankina VA; Avaeva SM Bioorg Khim; 1987 May; 13(5):592-8. PubMed ID: 3040009 [TBL] [Abstract][Full Text] [Related]
16. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties. Volk SE; Dudarenkov VY; Käpylä J; Kasho VN; Voloshina OA; Salminen T; Goldman A; Lahti R; Baykov AA; Cooperman BS Biochemistry; 1996 Apr; 35(15):4662-9. PubMed ID: 8664255 [TBL] [Abstract][Full Text] [Related]
17. Effect of D97E substitution on the kinetic and thermodynamic properties of Escherichia coli inorganic pyrophosphatase. Käpylä J; Hyytiä T; Lahti R; Goldman A; Baykov AA; Cooperman BS Biochemistry; 1995 Jan; 34(3):792-800. PubMed ID: 7827038 [TBL] [Abstract][Full Text] [Related]
18. A site-directed mutagenesis study of Saccharomyces cerevisiae pyrophosphatase. Functional conservation of the active site of soluble inorganic pyrophosphatases. Heikinheimo P; Pohjanjoki P; Helminen A; Tasanen M; Cooperman BS; Goldman A; Baykov A; Lahti R Eur J Biochem; 1996 Jul; 239(1):138-43. PubMed ID: 8706698 [TBL] [Abstract][Full Text] [Related]