BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8980645)

  • 1. GroEL reversibly binds to, and causes rapid inactivation of, human carbonic anhydrase II at high temperatures.
    Persson M; Carlsson U; Bergenhem NC
    Biochim Biophys Acta; 1996 Dec; 1298(2):191-8. PubMed ID: 8980645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GroEL provides a folding pathway with lower apparent activation energy compared to spontaneous refolding of human carbonic anhydrase II.
    Persson M; Carlsson U; Bergenhem N
    FEBS Lett; 1997 Jul; 411(1):43-7. PubMed ID: 9247139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cis-trans isomerization is rate-determining in the reactivation of denatured human carbonic anhydrase II as evidenced by proline isomerase.
    Fransson C; Freskgård PO; Herbertsson H; Johansson A; Jonasson P; Mårtensson LG; Svensson M; Jonsson BH; Carlsson U
    FEBS Lett; 1992 Jan; 296(1):90-4. PubMed ID: 1730298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chaperonin cycle cannot substitute for prolyl isomerase activity, but GroEL alone promotes productive folding of a cyclophilin-sensitive substrate to a cyclophilin-resistant form.
    von Ahsen O; Tropschug M; Pfanner N; Rassow J
    EMBO J; 1997 Aug; 16(15):4568-78. PubMed ID: 9303301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPR mapping of interactions between spin-labeled variants of human carbonic anhydrase II and GroEL: evidence for increased flexibility of the hydrophobic core by the interaction.
    Persson M; Hammarström P; Lindgren M; Jonsson BH; Svensson M; Carlsson U
    Biochemistry; 1999 Jan; 38(1):432-41. PubMed ID: 9890926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic analysis of the folding of human carbonic anhydrase II and its catalysis by cyclophilin.
    Kern G; Kern D; Schmid FX; Fischer G
    J Biol Chem; 1995 Jan; 270(2):740-5. PubMed ID: 7822304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reassessment of the putative chaperone function of prolyl-cis/trans-isomerases.
    Kern G; Kern D; Schmid FX; Fischer G
    FEBS Lett; 1994 Jul; 348(2):145-8. PubMed ID: 7913447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolyl isomerases catalyze antibody folding in vitro.
    Lilie H; Lang K; Rudolph R; Buchner J
    Protein Sci; 1993 Sep; 2(9):1490-6. PubMed ID: 8104614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein compactness measured by fluorescence resonance energy transfer. Human carbonic anhydrase ii is considerably expanded by the interaction of GroEL.
    Hammarstrom P; Persson M; Carlsson U
    J Biol Chem; 2001 Jun; 276(24):21765-75. PubMed ID: 11278767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple cycles of global unfolding of GroEL-bound cyclophilin A evidenced by NMR.
    Nieba-Axmann SE; Ottiger M; Wüthrich K; Plückthun A
    J Mol Biol; 1997 Sep; 271(5):803-18. PubMed ID: 9299328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase.
    Freskgård PO; Bergenhem N; Jonsson BH; Svensson M; Carlsson U
    Science; 1992 Oct; 258(5081):466-8. PubMed ID: 1357751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein substrate binding induces conformational changes in the chaperonin GroEL. A suggested mechanism for unfoldase activity.
    Hammarström P; Persson M; Owenius R; Lindgren M; Carlsson U
    J Biol Chem; 2000 Jul; 275(30):22832-8. PubMed ID: 10811634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Destabilization of the complete protein secondary structure on binding to the chaperone GroEL.
    Zahn R; Spitzfaden C; Ottiger M; Wüthrich K; Plückthun A
    Nature; 1994 Mar; 368(6468):261-5. PubMed ID: 7908413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL.
    Zahn R; Buckle AM; Perrett S; Johnson CM; Corrales FJ; Golbik R; Fersht AR
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15024-9. PubMed ID: 8986757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GroEL/ES-mediated refolding of human carbonic anhydrase II: role of N-terminal helices as recognition motifs for GroEL.
    Persson M; Aronsson G; Bergenhem N; Freskgård PO; Jonsson BH; Surin BP; Spangfort MD; Carlsson U
    Biochim Biophys Acta; 1995 Mar; 1247(2):195-200. PubMed ID: 7696308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of a burst-phase intermediate formed in the folding of denatured D-glyceraldehyde-3-phosphate dehydrogenase by chaperonin 60 and 8-anilino-1-naphthalenesulphonic acid.
    Li XL; Lei XD; Cai H; Li J; Yang SL; Wang CC; Tsou CL
    Biochem J; 1998 Apr; 331 ( Pt 2)(Pt 2):505-11. PubMed ID: 9531491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolded, oxidized, and thermoinactivated forms of glyceraldehyde-3-phosphate dehydrogenase interact with the chaperonin GroEL in different ways.
    Naletova IN; Muronetz VI; Schmalhausen EV
    Biochim Biophys Acta; 2006 Apr; 1764(4):831-8. PubMed ID: 16551514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homologous proteins with different affinities for groEL. The refolding of the aspartate aminotransferase isozymes at varying temperatures.
    Mattingly JR; Iriarte A; Martinez-Carrion M
    J Biol Chem; 1995 Jan; 270(3):1138-48. PubMed ID: 7836372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides.
    Kandror O; Sherman M; Moerschell R; Goldberg AL
    J Biol Chem; 1997 Jan; 272(3):1730-4. PubMed ID: 8999853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GroEL-assisted and -unassisted refolding of mature and precursor adrenodoxin: the role of the precursor sequence.
    Bera AK; Bernhardt R
    Arch Biochem Biophys; 1999 Jul; 367(1):89-94. PubMed ID: 10375403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.