These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 8980683)
21. Tension in haemoglobin revealed by Fe-His(F8) bond rupture in the fully liganded T-state. Paoli M; Dodson G; Liddington RC; Wilkinson AJ J Mol Biol; 1997 Aug; 271(2):161-7. PubMed ID: 9268649 [TBL] [Abstract][Full Text] [Related]
22. Hydropathic analysis of the non-covalent interactions between molecular subunits of structurally characterized hemoglobins. Abraham DJ; Kellogg GE; Holt JM; Ackers GK J Mol Biol; 1997 Oct; 272(4):613-32. PubMed ID: 9325116 [TBL] [Abstract][Full Text] [Related]
23. Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures. Mouawad L; Perahia D J Mol Biol; 1996 May; 258(2):393-410. PubMed ID: 8627633 [TBL] [Abstract][Full Text] [Related]
24. Infrared crystallographic investigation of T-state hemoglobin. Khachfe H; Mylrajan M; Sage JT Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):39-52. PubMed ID: 9551636 [TBL] [Abstract][Full Text] [Related]
25. Spectroscopic and crystallographic characterization of a tetrameric hemoglobin oxidation reveals structural features of the functional intermediate relaxed/tense state. Vitagliano L; Vergara A; Bonomi G; Merlino A; Verde C; di Prisco G; Howes BD; Smulevich G; Mazzarella L J Am Chem Soc; 2008 Aug; 130(32):10527-35. PubMed ID: 18642904 [TBL] [Abstract][Full Text] [Related]
26. Structure of relaxed-state human hemoglobin: insight into ligand uptake, transport and release. Jenkins JD; Musayev FN; Danso-Danquah R; Abraham DJ; Safo MK Acta Crystallogr D Biol Crystallogr; 2009 Jan; 65(Pt 1):41-8. PubMed ID: 19153465 [TBL] [Abstract][Full Text] [Related]
27. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: a thermodynamic, kinetic and X-ray crystallographic study. Bolognesi M; Boffi A; Coletta M; Mozzarelli A; Pesce A; Tarricone C; Ascenzi P J Mol Biol; 1999 Aug; 291(3):637-50. PubMed ID: 10448042 [TBL] [Abstract][Full Text] [Related]
28. A new relaxed state in horse methemoglobin characterized by crystallographic studies. Sankaranarayanan R; Biswal BK; Vijayan M Proteins; 2005 Aug; 60(3):547-51. PubMed ID: 15887226 [TBL] [Abstract][Full Text] [Related]
29. Crystal structures of unliganded and half-liganded human hemoglobin derivatives cross-linked between Lys 82beta1 and Lys 82beta2. Park SY; Shibayama N; Hiraki T; Tame JR Biochemistry; 2004 Jul; 43(27):8711-7. PubMed ID: 15236579 [TBL] [Abstract][Full Text] [Related]
30. The conformational and dynamic basis for ligand binding reactivity in hemoglobin Ypsilanti (beta 99 asp-->Tyr): origin of the quaternary enhancement effect. Huang J; Juszczak LJ; Peterson ES; Shannon CF; Yang M; Huang S; Vidugiris GV; Friedman JM Biochemistry; 1999 Apr; 38(14):4514-25. PubMed ID: 10194373 [TBL] [Abstract][Full Text] [Related]
31. Allostery of the two-state model of hemoglobin studied by ECEPP energy minimization. Seno Y J Comput Chem; 2006 Apr; 27(6):701-10. PubMed ID: 16514594 [TBL] [Abstract][Full Text] [Related]
32. Ligand-induced tertiary relaxations during the T-to-R quaternary transition in hemoglobin. Ronda L; Abbruzzetti S; Bruno S; Bettati S; Mozzarelli A; Viappiani C J Phys Chem B; 2008 Oct; 112(40):12790-4. PubMed ID: 18783270 [TBL] [Abstract][Full Text] [Related]
33. The origin of differences in the physical properties of the equilibrium forms of cytochrome b5 revealed through high-resolution NMR structures and backbone dynamic analyses. Dangi B; Sarma S; Yan C; Banville DL; Guiles RD Biochemistry; 1998 Jun; 37(23):8289-302. PubMed ID: 9622481 [TBL] [Abstract][Full Text] [Related]
34. Folding of horse cytochrome c in the reduced state. Bhuyan AK; Udgaonkar JB J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255 [TBL] [Abstract][Full Text] [Related]
35. Structural basis for the potent antisickling effect of a novel class of five-membered heterocyclic aldehydic compounds. Safo MK; Abdulmalik O; Danso-Danquah R; Burnett JC; Nokuri S; Joshi GS; Musayev FN; Asakura T; Abraham DJ J Med Chem; 2004 Sep; 47(19):4665-76. PubMed ID: 15341482 [TBL] [Abstract][Full Text] [Related]
36. Allosteric effectors do not alter the oxygen affinity of hemoglobin crystals. Mozzarelli A; Rivetti C; Rossi GL; Eaton WA; Henry ER Protein Sci; 1997 Feb; 6(2):484-9. PubMed ID: 9041656 [TBL] [Abstract][Full Text] [Related]
37. Combined crystallographic and spectroscopic analysis of Trematomus bernacchii hemoglobin highlights analogies and differences in the peculiar oxidation pathway of Antarctic fish hemoglobins. Merlino A; Vitagliano L; Howes BD; Verde C; di Prisco G; Smulevich G; Sica F; Vergara A Biopolymers; 2009 Dec; 91(12):1117-25. PubMed ID: 19373928 [TBL] [Abstract][Full Text] [Related]
39. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process. Tsai CH; Shen TJ; Ho NT; Ho C Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550 [TBL] [Abstract][Full Text] [Related]
40. The crystal structures of trout Hb I in the deoxy and carbonmonoxy forms. Tame JR; Wilson JC; Weber RE J Mol Biol; 1996 Jun; 259(4):749-60. PubMed ID: 8683580 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]