These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 8980719)

  • 1. The neurons in the gelatinosal complex (Laminae II and III) of the monkey (Macaca mulatta): a Golgi study.
    Beal JA; Cooper MH
    J Comp Neurol; 1978 May; 179(1):89-121. PubMed ID: 8980719
    [No Abstract]   [Full Text] [Related]  

  • 2. Afferent fibers in the substantia gelatinosa of the adult monkey (Macaca mulatta): a Golgi study.
    Beal JA; Fox CA
    J Comp Neurol; 1976 Jul; 168(1):113-43. PubMed ID: 819467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ventral dendritic arbor of marginal (lamina I) neurons in the adult primate spinal cord.
    Beal JA
    Neurosci Lett; 1979 Oct; 14(2-3):201-6. PubMed ID: 119186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substantia gelatinosa neurons in the medullary dorsal horn: An intracellular labeling study in the rat.
    Li YQ; Li H; Kaneko T; Mizuno N
    J Comp Neurol; 1999 Aug; 411(3):399-412. PubMed ID: 10413775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serial reconstruction of Ramón y Cajal's large primary afferent complexes in laminae II and III of the adult monkey spinal cord: a Golgi study.
    Beal JA
    Brain Res; 1979 Apr; 166(1):161-5. PubMed ID: 105783
    [No Abstract]   [Full Text] [Related]  

  • 6. The confronting cisternae in neurons in the substantia gelatinosa of the spinal cord of rats and Japanese monkeys.
    Inomata K; Okada T; Seguchi H; Ogawa K
    Cell Tissue Res; 1983; 232(3):487-92. PubMed ID: 6309398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and genetic features of a labeled class of spinal substantia gelatinosa neurons in a transgenic mouse.
    Hantman AW; Perl ER
    J Comp Neurol; 2005 Nov; 492(1):90-100. PubMed ID: 16175558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanilloid receptor-1 (TRPV1)-dependent activation of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse.
    Ferrini F; Salio C; Vergnano AM; Merighi A
    Pain; 2007 May; 129(1-2):195-209. PubMed ID: 17317009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Monkey chromosome identification by the method of differential staining with Romanovskii--Giemsa solution I. Macaca mulatta].
    Dzhemilev ZA
    Genetika; 1975; 11(1):115-21. PubMed ID: 57900
    [No Abstract]   [Full Text] [Related]  

  • 10. Altered long-term synaptic plasticity and kainate-induced Ca2+ transients in the substantia gelatinosa neurons in GLU(K6)-deficient mice.
    Youn DH; Voitenko N; Gerber G; Park YK; Galik J; Randić M
    Brain Res Mol Brain Res; 2005 Dec; 142(1):9-18. PubMed ID: 16219388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABAergic tonic inhibition of substantia gelatinosa neurons in mouse spinal cord.
    Takahashi A; Mashimo T; Uchida I
    Neuroreport; 2006 Aug; 17(12):1331-5. PubMed ID: 16951580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: possible implications for sensory sprouting.
    Tong YG; Wang HF; Ju G; Grant G; Hökfelt T; Zhang X
    J Comp Neurol; 1999 Feb; 404(2):143-58. PubMed ID: 9934990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytological organization of the central gelatinosa in the turtle spinal cord.
    Trujillo-Cenóz O; Fernández A; Radmilovich M; Reali C; Russo RE
    J Comp Neurol; 2007 May; 502(2):291-308. PubMed ID: 17348014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter.
    Tomioka R; Rockland KS
    J Comp Neurol; 2007 Dec; 505(5):526-38. PubMed ID: 17924571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is the rhesus monkey (Macaca mulatta) comparable to humans? Histomorphology of the sphincteric musculature of the lower urinary tract including 3D-reconstruction.
    Ganzer R; Köhler D; Neuhaus J; Dorschner W; Stolzenburg JU
    Anat Histol Embryol; 2004 Dec; 33(6):355-61. PubMed ID: 15540995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sciatic chronic constriction injury produces cell-type-specific changes in the electrophysiological properties of rat substantia gelatinosa neurons.
    Balasubramanyan S; Stemkowski PL; Stebbing MJ; Smith PA
    J Neurophysiol; 2006 Aug; 96(2):579-90. PubMed ID: 16611846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noradrenaline inhibits substantia gelatinosa neurons in mice trigeminal subnucleus caudalis via alpha(2) and beta adrenoceptors.
    Han SK; Park JR; Park SA; Chun SW; Lee JC; Lee SY; Ryu PD; Park SJ
    Neurosci Lett; 2007 Jan; 411(2):92-7. PubMed ID: 17110030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nitric oxide on hyperpolarization-activated current in substantia gelatinosa neurons of rats.
    Kim HY; Kim SJ; Kim J; Oh SB; Cho H; Jung SJ
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1648-53. PubMed ID: 16274674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electron microscope immunocytochemical study of GABA(B) R2 receptors in the monkey basal ganglia: a comparative analysis with GABA(B) R1 receptor distribution.
    Charara A; Galvan A; Kuwajima M; Hall RA; Smith Y
    J Comp Neurol; 2004 Aug; 476(1):65-79. PubMed ID: 15236467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NK1 receptor activation leads to enhancement of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse.
    Vergnano AM; Salio C; Merighi A
    Pain; 2004 Nov; 112(1-2):37-47. PubMed ID: 15494183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.