These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8980791)

  • 21. The role of T-channels in the generation of thalamocortical rhythms.
    Contreras D
    CNS Neurol Disord Drug Targets; 2006 Dec; 5(6):571-85. PubMed ID: 17168743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Infraslow (<0.1 Hz) oscillations in thalamic relay nuclei basic mechanisms and significance to health and disease states.
    Hughes SW; Lorincz ML; Parri HR; Crunelli V
    Prog Brain Res; 2011; 193():145-62. PubMed ID: 21854961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges.
    Deschênes M; Paradis M; Roy JP; Steriade M
    J Neurophysiol; 1984 Jun; 51(6):1196-219. PubMed ID: 6737028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered thalamic GABAA-receptor subunit expression in the stargazer mouse model of absence epilepsy.
    Seo S; Leitch B
    Epilepsia; 2014 Feb; 55(2):224-32. PubMed ID: 24417662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca(2+) Channels.
    Pellegrini C; Lecci S; Lüthi A; Astori S
    Sleep; 2016 Apr; 39(4):875-85. PubMed ID: 26612388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the thalamic reticular nucleus in the generation of rhythmic thalamo-cortical activities subserving spike and waves.
    Avanzini G; de Curtis M; Marescaux C; Panzica F; Spreafico R; Vergnes M
    J Neural Transm Suppl; 1992; 35():85-95. PubMed ID: 1512596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abolition of spindle oscillations and 3-Hz absence seizurelike activity in the thalamus by using high-frequency stimulation: potential mechanism of action.
    Lee KH; Hitti FL; Shalinsky MH; Kim U; Leiter JC; Roberts DW
    J Neurosurg; 2005 Sep; 103(3):538-45. PubMed ID: 16235687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release.
    Coulon P; Herr D; Kanyshkova T; Meuth P; Budde T; Pape HC
    Cell Calcium; 2009; 46(5-6):333-46. PubMed ID: 19913909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy.
    Tsakiridou E; Bertollini L; de Curtis M; Avanzini G; Pape HC
    J Neurosci; 1995 Apr; 15(4):3110-7. PubMed ID: 7722649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dysregulation of Neuronal Ca2+ Channel Linked to Heightened Sympathetic Phenotype in Prohypertensive States.
    Larsen HE; Bardsley EN; Lefkimmiatis K; Paterson DJ
    J Neurosci; 2016 Aug; 36(33):8562-73. PubMed ID: 27535905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural mechanisms underlying brain waves: from neural membranes to networks.
    Lopes da Silva F
    Electroencephalogr Clin Neurophysiol; 1991 Aug; 79(2):81-93. PubMed ID: 1713832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oscillations in calcium-cyclic AMP control loops form the basis of pacemaker activity and other high frequency biological rhythms.
    Rapp PE; Berridge MJ
    J Theor Biol; 1977 Jun; 66(3):497-525. PubMed ID: 196141
    [No Abstract]   [Full Text] [Related]  

  • 35. Sleep, epilepsy and thalamic reticular inhibitory neurons.
    Steriade M
    Trends Neurosci; 2005 Jun; 28(6):317-24. PubMed ID: 15927688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations.
    Steriade M; Timofeev I
    Neuron; 2003 Feb; 37(4):563-76. PubMed ID: 12597855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Idiopathic partial epilepsy with occipital paroxysms].
    Martinović Z
    Srp Arh Celok Lek; 1999; 127(7-8):241-8. PubMed ID: 10624397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc reduces low-threshold Ca2+ currents of rat thalamic relay neurons.
    Noh JH; Chung JM
    Neurosci Res; 2003 Oct; 47(2):261-5. PubMed ID: 14512152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. cAMP modulates the excitability of immortalized H=hypothalamic (GT1) neurons via a cyclic nucleotide gated channel.
    Charles A; Weiner R; Costantin J
    Mol Endocrinol; 2001 Jun; 15(6):997-1009. PubMed ID: 11376117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sinusoidal modeling of ictal activity along a thalamus-to-cortex seizure pathway I: new coherence approaches.
    Sherman DL; Patel CB; Zhang N; Rossell LA; Tsai YC; Thakor NV; Mirski MA
    Ann Biomed Eng; 2004 Sep; 32(9):1252-64. PubMed ID: 15493512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.