These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8981622)

  • 21. Effects of strychnine-insensitive glycine receptor ligands in rats discriminating dizocilpine or phencyclidine from saline.
    Witkin JM; Steele TD; Sharpe LG
    J Pharmacol Exp Ther; 1997 Jan; 280(1):46-52. PubMed ID: 8996180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMDA receptor blockade attenuates CCK-induced reduction of real feeding but not sham feeding.
    Covasa M; Ritter RC; Burns GA
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R826-31. PubMed ID: 14726428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholinergic neurotransmission participates in increased food intake induced by NMDA receptor blockade.
    Covasa M; Ritter RC; Burns GA
    Am J Physiol Regul Integr Comp Physiol; 2003 Sep; 285(3):R641-8. PubMed ID: 12775553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction of food intake by intestinal macronutrient infusion is not reversed by NMDA receptor blockade.
    Covasa M; Ritter RC; Burns GA
    Am J Physiol Regul Integr Comp Physiol; 2000 Feb; 278(2):R345-51. PubMed ID: 10666134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals.
    Zheng H; Kelly L; Patterson LM; Berthoud HR
    Am J Physiol; 1999 Oct; 277(4):R1104-11. PubMed ID: 10516251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMDA channels control meal size via central vagal afferent terminals.
    Gillespie BR; Burns GA; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMDA receptor participation in control of food intake by the stomach.
    Covasa M; Ritter RC; Burns GA
    Am J Physiol Regul Integr Comp Physiol; 2000 May; 278(5):R1362-8. PubMed ID: 10801308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the N-methyl-d-aspartate receptor antagonist on locomotor activity and cholecystokinin-induced anorexigenic action in a goldfish model.
    Kang KS; Yahashi S; Matsuda K
    Neurosci Lett; 2011 Jan; 488(3):238-41. PubMed ID: 21094216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Additive satiety-delaying effects of capsaicin-induced visceral deafferentation and NMDA receptor blockade suggest separate pathways.
    Berthoud H; Patterson LM; Morales S; Zheng H
    Pharmacol Biochem Behav; 2000 Oct; 67(2):371-5. PubMed ID: 11124403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lesions of the dorsal vagal complex abolish increases in meal size induced by NMDA receptor blockade.
    Treece BR; Ritter RC; Burns GA
    Brain Res; 2000 Jul; 872(1-2):37-43. PubMed ID: 10924673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MK801 increases feeding and decreases drinking in nondeprived, freely feeding rats.
    Jahng JW; Houpt TA
    Pharmacol Biochem Behav; 2001 Feb; 68(2):181-6. PubMed ID: 11267621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the non-competitive NMDA receptor antagonist MK-801 on 2-deoxy-D-glucose-induced hyperphagia in rats.
    Sugimoto Y; Yamada J; Yoshikawa T
    Eur J Pharmacol; 1999 Aug; 378(2):149-52. PubMed ID: 10478626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutamate-dependent regulation of food intake is altered with age through changes in NMDA receptor phenotypes on vagal afferent neurons.
    Minaya DM; Larson RW; Podlasz P; Czaja K
    Physiol Behav; 2018 May; 189():26-31. PubMed ID: 29476874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 5-HT2 receptor agonist MK-212 reduces food intake and increases resting but prevents the behavioural satiety sequence.
    Halford JC; Lawton CL; Blundell JE
    Pharmacol Biochem Behav; 1997 Jan; 56(1):41-6. PubMed ID: 8981607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of NMDA glutamate receptor antagonist drugs on the volitional consumption of ethanol by a genetic drinking rat.
    McMillen BA; Joyner PW; Parmar CA; Tyer WE; Williams HL
    Brain Res Bull; 2004 Sep; 64(3):279-84. PubMed ID: 15464866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 on food-anticipatory activity rhythm in the rat.
    Ono M; Shibata S; Minamoto Y; Watanabe S
    Physiol Behav; 1996; 59(4-5):585-9. PubMed ID: 8778838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NREM delta stimulation following MK-801 is a response of sleep systems.
    Campbell IG; Feinberg I
    J Neurophysiol; 1996 Dec; 76(6):3714-20. PubMed ID: 8985869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arcopallium, NMDA antagonists and ingestive behaviors in pigeons.
    da Silva AA; Campanella LC; Ramos MC; Parreira C; Faria MS; Marino-Neto J; Paschoalini MA
    Physiol Behav; 2009 Dec; 98(5):594-601. PubMed ID: 19799921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hindbrain administration of NMDA receptor antagonist AP-5 increases food intake in the rat.
    Hung CY; Covasa M; Ritter RC; Burns GA
    Am J Physiol Regul Integr Comp Physiol; 2006 Mar; 290(3):R642-51. PubMed ID: 16269572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of the NMDA receptor antagonist MK-801 on short-interval timing in rats.
    Miller JP; McAuley JD; Pang KC
    Behav Neurosci; 2006 Feb; 120(1):162-72. PubMed ID: 16492126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.