BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8982133)

  • 41. Flow cytometric analysis of chimerism in the rat tolerant to a renal allograft.
    Naar JD; Fisher RA; Saggi BH; Wakely PE; Tawes JW; Posner MP
    J Surg Res; 1998 Jul; 77(2):179-86. PubMed ID: 9733606
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bone formation in CaP-coated and noncoated titanium fiber mesh.
    Vehof JW; van den Dolder J; de Ruijter JE; Spauwen PH; Jansen JA
    J Biomed Mater Res A; 2003 Mar; 64(3):417-26. PubMed ID: 12579555
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tacrolimus-based partial conditioning produces stable mixed lymphohematopoietic chimerism and tolerance for cardiac allografts.
    Gammie JS; Li S; Zeevi A; Demetris AJ; Ildstad ST; Pham SM
    Circulation; 1998 Nov; 98(19 Suppl):II163-8; discussion II168-9. PubMed ID: 9852899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficacy of transient treatment with FK506 in the early phase on cyclophosphamide-induced bone marrow chimerism and transplant tolerance across MHC barriers.
    Okayama J; Ko S; Kanehiro H; Kanokogi H; Nakajima Y
    J Surg Res; 2006 Jun; 133(2):61-8. PubMed ID: 16376943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Experimental study of tissue engineered bone with coralline hydroxyapatite as scaffolds].
    Shi PL; Gu XM; Chen FL
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2001 Nov; 15(6):373-6. PubMed ID: 11762228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo.
    Xue W; Liu X; Zheng X; Ding C
    J Biomed Mater Res A; 2005 Sep; 74(4):553-61. PubMed ID: 16025491
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Growth of bone marrow cells on porous ceramics in vitro.
    Uchida A; Nade S; McCartney E; Ching W
    J Biomed Mater Res; 1987 Jan; 21(1):1-10. PubMed ID: 3558435
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone graft substitute using hydroxyapatite scaffold seeded with tissue engineered autologous osteoprogenitor cells in spinal fusion: early result in a sheep model.
    Tan KK; Tan GH; Shamsul BS; Chua KH; Ng MH; Ruszymah BH; Aminuddin BS; Loqman MY
    Med J Malaysia; 2005 Jul; 60 Suppl C():53-8. PubMed ID: 16381285
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stimulation of osteogenic activity in mesenchymal stem cells by FK506.
    Dai W; Dong J; Fang T; Uemura T
    J Biomed Mater Res A; 2008 Jul; 86(1):235-43. PubMed ID: 18080300
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes.
    Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA
    J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vascularized bone marrow transplantation: A new surgical approach using isolated femoral bone/bone marrow.
    Suzuki H; Patel N; Matthews M; DelRossi AJ; Doolin EJ; Hewitt CW
    J Surg Res; 2000 Apr; 89(2):176-83. PubMed ID: 10729247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential effects of bone graft substitutes on regeneration of bone marrow.
    Schwartz Z; Doukarsky-Marx T; Nasatzky E; Goultschin J; Ranly DM; Greenspan DC; Sela J; Boyan BD
    Clin Oral Implants Res; 2008 Dec; 19(12):1233-45. PubMed ID: 19040438
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Porous hydroxylapatite ceramics with homologous osteoblasts from cell cultures for bone replacement].
    Lang H; Mertens T
    Dtsch Z Mund Kiefer Gesichtschir; 1991; 15(1):64-8. PubMed ID: 1814669
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Osteogenesis in a rat model: use of bone marrow cells and biodegradable gelatin matrix carrier.
    Troum S; Dalton ML
    J South Orthop Assoc; 2001; 10(1):37-43. PubMed ID: 12132841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of gene expression in osteogenic cultured marrow/hydroxyapatite construct implanted at ectopic sites: a comparison with the osteogenic ability of cancellous bone.
    Yoshikawa T; Ohgushi H; Akahane M; Tamai S; Ichijima K
    J Biomed Mater Res; 1998 Sep; 41(4):568-73. PubMed ID: 9697029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The impact of portal infusion with donor-derived bone marrow cells and intracellular cytokine expression of graft-infiltrating lymphocytes on the graft survival in rat small bowel transplant model.
    Mitsuoka N; Iwagaki H; Ozaki M; Sheng SD; Sadamori H; Matsukawa H; Morimoto Y; Matsuoka J; Tanaka N; Yagi T
    Transpl Immunol; 2004 Nov; 13(3):155-60. PubMed ID: 15381197
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ectopic bone formation is enhanced in senescent animals implanted with embryonic cells.
    Nimni ME; Bernick S; Ertl D; Nishimoto SK; Paule W; Strates BS; Villaneuva J
    Clin Orthop Relat Res; 1988 Sep; (234):255-66. PubMed ID: 3044663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study.
    Galois L; Mainard D
    Acta Orthop Belg; 2004 Dec; 70(6):598-603. PubMed ID: 15669463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancement of rat islet tolerance with bone marrow transplantation using a non-myeloablative procedure II: failure despite the presence of lymphocyte microchimerism in the fully allogeneic Lewis/Brown-Norway model.
    Kriz J; Saudek F; Girman P; Novota P
    Int J Tissue React; 2004; 26(3-4):75-83. PubMed ID: 15648439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic.
    Goshima J; Goldberg VM; Caplan AI
    Biomaterials; 1991 Mar; 12(2):253-8. PubMed ID: 1878461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.