These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8982165)

  • 21. Stable expression of heterologous microtubule-associated proteins (MAPs) in Chinese hamster ovary cells: evidence for differing roles of MAPs in microtubule organization.
    Barlow S; Gonzalez-Garay ML; West RR; Olmsted JB; Cabral F
    J Cell Biol; 1994 Aug; 126(4):1017-29. PubMed ID: 7519616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtubule-associated protein 2 and the organization of cellular microtubules.
    Weisshaar B; Matus A
    J Neurocytol; 1993 Sep; 22(9):727-34. PubMed ID: 8270957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lack of stabilized microtubules as a result of the absence of major maps in CAD cells does not preclude neurite formation.
    Bisig CG; Chesta ME; Zampar GG; Purro SA; Santander VS; Arce CA
    FEBS J; 2009 Dec; 276(23):7110-23. PubMed ID: 19878302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubule-associated proteins, MAP-1a, HMW-MAP2 and Tau.
    Ferreira A; Busciglio J; Cáceres A
    Brain Res Dev Brain Res; 1989 Oct; 49(2):215-28. PubMed ID: 2509111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of NaCN and ionomycin on neuronal viability and on the abundance of microtubule-associated proteins MAP1, MAP2, and tau in isolated chick cortical neurons.
    Hutter-Paier B; Grygar E; Loibner M; Skofitsch G; Windisch M
    Cell Tissue Res; 2000 Oct; 302(1):39-47. PubMed ID: 11079714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons.
    Hirokawa N; Funakoshi T; Sato-Harada R; Kanai Y
    J Cell Biol; 1996 Feb; 132(4):667-79. PubMed ID: 8647897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons.
    Fan QW; Yu W; Gong JS; Zou K; Sawamura N; Senda T; Yanagisawa K; Michikawa M
    J Neurochem; 2002 Jan; 80(1):178-90. PubMed ID: 11796756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules.
    Lovestone S; Hartley CL; Pearce J; Anderton BH
    Neuroscience; 1996 Aug; 73(4):1145-57. PubMed ID: 8809831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton.
    Ozer RS; Halpain S
    Mol Biol Cell; 2000 Oct; 11(10):3573-87. PubMed ID: 11029056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules.
    Mohan R; John A
    IUBMB Life; 2015 Jun; 67(6):395-403. PubMed ID: 26104829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of tau protein in non-neuronal cells: microtubule binding and stabilization.
    Lee G; Rook SL
    J Cell Sci; 1992 Jun; 102 ( Pt 2)():227-37. PubMed ID: 1400630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tau interaction with microtubules in vivo.
    Samsonov A; Yu JZ; Rasenick M; Popov SV
    J Cell Sci; 2004 Dec; 117(Pt 25):6129-41. PubMed ID: 15564376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dysfunction of microtubule-associated proteins of MAP2/tau family in Prion disease.
    Zhang J; Dong XP
    Prion; 2012; 6(4):334-8. PubMed ID: 22874672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct patterns of tau-dependent process formation in mammalian cell lines.
    Bruijn LI; Krishnamurthy PK; Gallo JM
    Neuroreport; 2004 Oct; 15(14):2223-6. PubMed ID: 15371738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras.
    Olson KR; McIntosh JR; Olmsted JB
    J Cell Biol; 1995 Aug; 130(3):639-50. PubMed ID: 7622564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity.
    González-Billault C; Engelke M; Jiménez-Mateos EM; Wandosell F; Cáceres A; Avila J
    J Neurosci Res; 2002 Mar; 67(6):713-9. PubMed ID: 11891784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The MAP2/Tau family of microtubule-associated proteins.
    Dehmelt L; Halpain S
    Genome Biol; 2005; 6(1):204. PubMed ID: 15642108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microtubule-associated type II protein kinase A is important for neurite elongation.
    Huang YA; Kao JW; Tseng DT; Chen WS; Chiang MH; Hwang E
    PLoS One; 2013; 8(8):e73890. PubMed ID: 23967353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase.
    Amano M; Kaneko T; Maeda A; Nakayama M; Ito M; Yamauchi T; Goto H; Fukata Y; Oshiro N; Shinohara A; Iwamatsu A; Kaibuchi K
    J Neurochem; 2003 Nov; 87(3):780-90. PubMed ID: 14535960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental plasticity of the dendritic compartment: focus on the cytoskeleton.
    Urbanska M; Swiech L; Jaworski J
    Adv Exp Med Biol; 2012; 970():265-84. PubMed ID: 22351060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.