BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8982269)

  • 1. Inhibition of microbial lipases with stereoisomeric triradylglycerol analog phosphonates.
    Stadler P; Zandonella G; Haalck L; Spener F; Hermetter A; Paltauf F
    Biochim Biophys Acta; 1996 Dec; 1304(3):229-44. PubMed ID: 8982269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonate analogues of triacylglycerols are potent inhibitors of lipase.
    Mannesse ML; Boots JW; Dijkman R; Slotboom AJ; van der Hijden HT; Egmond MR; Verheij HM; de Haas GH
    Biochim Biophys Acta; 1995 Oct; 1259(1):56-64. PubMed ID: 7492616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent inhibitors reveal solvent-dependent micropolarity in the lipid binding sites of lipases.
    Oskolkova OV; Hermetter A
    Biochim Biophys Acta; 2002 May; 1597(1):60-6. PubMed ID: 12009403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselectivity of microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases.
    Stadler P; Kovac A; Haalck L; Spener F; Paltauf F
    Eur J Biochem; 1995 Jan; 227(1-2):335-43. PubMed ID: 7851405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.
    Potthoff AP; Haalck L; Spener F
    Biochim Biophys Acta; 1998 Jan; 1389(2):123-31. PubMed ID: 9461253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolysis and esterification of acylglycerols and analogs in aqueous medium catalyzed by microbial lipases.
    Kovac A; Stadler P; Haalck L; Spener F; Paltauf F
    Biochim Biophys Acta; 1996 May; 1301(1-2):57-66. PubMed ID: 8652651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae.
    Zandonella G; Stadler P; Haalck L; Spener F; Paltauf F; Hermetter A
    Eur J Biochem; 1999 May; 262(1):63-9. PubMed ID: 10231365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent organophosphonates as inhibitors of microbial lipases.
    Oskolkova OV; Saf R; Zenzmaier E; Hermetter A
    Chem Phys Lipids; 2003 Oct; 125(2):103-14. PubMed ID: 14499469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of Rhizopus oryzae lipase with modified stereoselectivity toward triradylglycerols.
    Scheib H; Pleiss J; Stadler P; Kovac A; Potthoff AP; Haalck L; Spener F; Paltauf F; Schmid RD
    Protein Eng; 1998 Aug; 11(8):675-82. PubMed ID: 9749920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of human gastric and pancreatic lipases by chiral alkylphosphonates. A kinetic study with 1,2-didecanoyl-sn-glycerol monolayer.
    Cavalier JF; Ransac S; Verger R; Buono G
    Chem Phys Lipids; 1999 Jul; 100(1-2):3-31. PubMed ID: 10640192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inversion of lipase stereospecificity for fluorogenic alkyldiacyl glycerols. Effect of substrate solubilization.
    Zandonella G; Haalck L; Spener F; Faber K; Paltauf F; Hermetter A
    Eur J Biochem; 1995 Jul; 231(1):50-5. PubMed ID: 7628484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence.
    Graupner M; Haalck L; Spener F; Lindner H; Glatter O; Paltauf F; Hermetter A
    Biophys J; 1999 Jul; 77(1):493-504. PubMed ID: 10388774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent inhibition of digestive lipases by chiral phosphonates.
    Cavalier JF; Buono G; Verger R
    Acc Chem Res; 2000 Sep; 33(9):579-89. PubMed ID: 10995195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of Rhizopus oryzae lipase using monomolecular film technique.
    Ben Salah A; Sayari A; Verger R; Gargouri Y
    Biochimie; 2001 Jun; 83(6):463-9. PubMed ID: 11506890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent inhibitors for the qualitative and quantitative analysis of lipolytic enzymes.
    Scholze H; Stütz H; Paltauf F; Hermetter A
    Anal Biochem; 1999 Dec; 276(1):72-80. PubMed ID: 10585746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase.
    Lang DA; Mannesse ML; de Haas GH; Verheij HM; Dijkstra BW
    Eur J Biochem; 1998 Jun; 254(2):333-40. PubMed ID: 9660188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staphylococcal lipases stereoselectively hydrolyse the sn-2 position of monomolecular films of diglyceride analogs. Application to sn-2 hydrolysis of triolein.
    Horchani H; Ben Salem N; Chaari A; Sayari A; Gargouri Y; Verger R
    J Colloid Interface Sci; 2010 Jul; 347(2):301-8. PubMed ID: 20403605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases.
    Point V; Malla RK; Diomande S; Martin BP; Delorme V; Carriere F; Canaan S; Rath NP; Spilling CD; Cavalier JF
    J Med Chem; 2012 Nov; 55(22):10204-19. PubMed ID: 23095026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselectivity of Mucorales lipases toward triradylglycerols--a simple solution to a complex problem.
    Scheib H; Pleiss J; Kovac A; Paltauf F; Schmid RD
    Protein Sci; 1999 Jan; 8(1):215-21. PubMed ID: 10210199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoselectivity of lipases. I. Hydrolysis of enantiomeric glyceride analogues by gastric and pancreatic lipases, a kinetic study using the monomolecular film technique.
    Ransac S; Rogalska E; Gargouri Y; Deveer AM; Paltauf F; de Haas GH; Verger R
    J Biol Chem; 1990 Nov; 265(33):20263-70. PubMed ID: 2243090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.