BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8982478)

  • 1. Acidity near eroding polylactide-polyglycolide in vitro and in vivo in rabbit tibial bone chambers.
    Martin C; Winet H; Bao JY
    Biomaterials; 1996 Dec; 17(24):2373-80. PubMed ID: 8982478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative bone healing near eroding polylactide-polyglycolide implants of differing crystallinity in rabbit tibial bone chambers.
    Winet H; Bao JY
    J Biomater Sci Polym Ed; 1997; 8(7):517-32. PubMed ID: 9195331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of polylactide-polyglycolide in a cortical defect: neoangiogenesis and blood supply in a bone chamber.
    Winet H; Hollinger JO; Stevanovic M
    J Orthop Res; 1995 Sep; 13(5):679-89. PubMed ID: 7472746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroblast growth factor-2 alters the effect of eroding polylactide-polyglycolide on osteogenesis in the bone chamber.
    Winet H; Bao JY
    J Biomed Mater Res; 1998 Jun; 40(4):567-76. PubMed ID: 9599033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of poly DL-lactide--co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit.
    Meikle MC; Papaioannou S; Ratledge TJ; Speight PM; Watt-Smith SR; Hill PA; Reynolds JJ
    Biomaterials; 1994 Jun; 15(7):513-21. PubMed ID: 7918904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of polylactide-polyglycolide in a cortical defect: neoosteogenesis in a bone chamber.
    Winet H; Hollinger JO
    J Biomed Mater Res; 1993 May; 27(5):667-76. PubMed ID: 7686160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone-derived growth factor release from poly(alpha-hydroxy acid) implants in vitro.
    Meikle MC; Mak WY; Papaioannou S; Davies EH; Mordan N; Reynolds JJ
    Biomaterials; 1993 Feb; 14(3):177-83. PubMed ID: 8386553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-reinforced polylactide/polyglycolide 80/20 screws take more than 1(1/2) years to resorb in rabbit cranial bone.
    Tiainen J; Soini Y; Törmälä P; Waris T; Ashammakhi N
    J Biomed Mater Res B Appl Biomater; 2004 Jul; 70(1):49-55. PubMed ID: 15199583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy.
    Mader K; Gallez B; Liu KJ; Swartz HM
    Biomaterials; 1996 Feb; 17(4):457-61. PubMed ID: 8938242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue responses to molecularly reinforced polylactide-co-glycolide implants.
    Lewandrowski KU; Gresser JD; Wise DL; Trantolo DJ; Hasirci V
    J Biomater Sci Polym Ed; 2000; 11(4):401-14. PubMed ID: 10903038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gel casting of resorbable polymers. 2. In-vitro degradation of bone graft substitutes.
    Coombes AG; Heckman JD
    Biomaterials; 1992; 13(5):297-307. PubMed ID: 1600032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo degradation characteristics of poly(glycerol sebacate).
    Wang Y; Kim YM; Langer R
    J Biomed Mater Res A; 2003 Jul; 66(1):192-7. PubMed ID: 12833446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections.
    Benoit MA; Mousset B; Delloye C; Bouillet R; Gillard J
    Int Orthop; 1997; 21(6):403-8. PubMed ID: 9498152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast growth factor-2 alters the effect of eroding polylactide-polyglycolide on angiogenesis in the bone chamber.
    Winet H; Bao JY
    Wound Repair Regen; 1997; 5(4):355-63. PubMed ID: 16984446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells.
    Kim H; Kim HW; Suh H
    Biomaterials; 2003 Nov; 24(25):4671-9. PubMed ID: 12951010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA).
    Hollinger JO
    J Biomed Mater Res; 1983 Jan; 17(1):71-82. PubMed ID: 6298242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polylactide-polyglycolide delivery system for physostigmine.
    Hussain MA; Mollica JA
    J Pharm Sci; 1993 May; 82(5):553-4. PubMed ID: 8360838
    [No Abstract]   [Full Text] [Related]  

  • 19. Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer.
    Vandorpe J; Schacht E; Dunn S; Hawley A; Stolnik S; Davis SS; Garnett MC; Davies MC; Illum L
    Biomaterials; 1997 Sep; 18(17):1147-52. PubMed ID: 9259511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.
    Elgendy HM; Norman ME; Keaton AR; Laurencin CT
    Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.