These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8982696)

  • 1. Involvement of K+ channel modulation in the proabsorptive effect of nitric oxide in the rat jejunum in vivo.
    Schirgi-Degen A; Beubler E
    Eur J Pharmacol; 1996 Dec; 316(2-3):257-62. PubMed ID: 8982696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of nitric oxide in the stimulation of intestinal fluid absorption in the rat jejunum in vivo.
    Schirgi-Degen A; Beubler E
    Br J Pharmacol; 1995 Jan; 114(1):13-8. PubMed ID: 7712008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide counteracts 5-hydroxytryptamine- and cholera toxin-induced fluid secretion and enhances the effect of oral rehydration solution.
    Beubler E; Schirgi-Degen A
    Eur J Pharmacol; 1997 May; 326(2-3):223-8. PubMed ID: 9196275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-mediated and N omega-nitro-L-arginine methyl ester-sensitive responses to cromakalim and diazoxide in the rat mesenteric bed.
    Feleder EC; Adler-Graschinsky E
    Eur J Pharmacol; 1997 Jan; 319(2-3):229-38. PubMed ID: 9042595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of vasorelaxant responses to potassium channel openers by basal nitric oxide in the rat isolated superior mesenteric arterial bed.
    McCulloch AI; Randall MD
    Br J Pharmacol; 1996 Mar; 117(5):859-66. PubMed ID: 8851502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of calcium-activated potassium channels to the vasodilator effect of bradykinin in the isolated, perfused kidney of the rat.
    Rapacon M; Mieyal P; McGiff JC; Fulton D; Quilley J
    Br J Pharmacol; 1996 Jul; 118(6):1504-8. PubMed ID: 8832078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the K(+)-channels opened by cromakalim, acetylcholine and substance P in rat aorta and porcine coronary artery.
    Bray K; Quast U
    Br J Pharmacol; 1991 Mar; 102(3):585-94. PubMed ID: 1285396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta 2-adrenergic dilation of resistance coronary vessels involves KATP channels and nitric oxide in conscious dogs.
    Ming Z; Parent R; Lavallée M
    Circulation; 1997 Mar; 95(6):1568-76. PubMed ID: 9118527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium channel openers, NIP-121 and cromakalim, enhance the relaxation induced by sodium nitroprusside in the guinea-pig isolated trachea.
    Shikada K; Tanaka S
    Br J Pharmacol; 1992 Dec; 107(4):1116-20. PubMed ID: 1334750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The resistance of some rat cerebral arteries to the vasorelaxant effect of cromakalim and other K+ channel openers.
    McPherson GA; Stork AP
    Br J Pharmacol; 1992 Jan; 105(1):51-8. PubMed ID: 1534504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of potassium on the action of the KATP modulators cromakalim, pinacidil, or glibenclamide on arrhythmias in isolated perfused rat heart subjected to regional ischaemia.
    D'Alonzo AJ; Darbenzio RB; Hess TA; Sewter JC; Sleph PG; Grover GJ
    Cardiovasc Res; 1994 Jun; 28(6):881-7. PubMed ID: 7923295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ channel-opening action contributes to the preventive effects of nicorandil on U46619-induced vasoconstriction of canine large coronary arteries in vivo.
    Kamijo T; Iwai T; Haruta K; Takeda K
    Arch Int Pharmacodyn Ther; 1996; 331(3):273-84. PubMed ID: 9124999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dilating effect of perivascularly applied potassium channel openers cromakalim and pinacidil in rat and cat pial arteries in situ.
    Wahl M; Parsons AA; Schilling L
    Cardiovasc Res; 1994 Dec; 28(12):1803-7. PubMed ID: 7867033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The individual enantiomers of cis-cromakalim possess K+ channel opening activity.
    Quast U; Villhauer EB
    Eur J Pharmacol; 1993 Apr; 245(2):165-71. PubMed ID: 8491256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of several potassium channel openers and glibenclamide on the uterus of the rat.
    Piper I; Minshall E; Downing SJ; Hollingsworth M; Sadraei H
    Br J Pharmacol; 1990 Dec; 101(4):901-7. PubMed ID: 2128195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KATP channel modulators increase survival rate during coronary occlusion-reperfusion in anaesthetized rats.
    Baczkó I; Leprán I; Papp JG
    Eur J Pharmacol; 1997 Apr; 324(1):77-83. PubMed ID: 9137916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proabsorptive action of gum arabic: regulation of nitric oxide metabolism in the basolateral potassium channel of the small intestine.
    Rehman K; Wingertzahn MA; Harper RG; Wapnir RA
    J Pediatr Gastroenterol Nutr; 2001 May; 32(5):529-33. PubMed ID: 11429512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of rubidium on responses to potassium channel openers in rat isolated aorta.
    Greenwood IA; Weston AH
    Br J Pharmacol; 1993 Aug; 109(4):925-32. PubMed ID: 8401946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of NG-nitro-L-arginine methyl ester on vasodilator responses to adrenaline or BRL 38227 in conscious rats.
    Gardiner SM; Kemp PA; Bennett T
    Br J Pharmacol; 1991 Nov; 104(3):731-7. PubMed ID: 1797333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.