BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8982865)

  • 21. Molecular cloning of the cDNA and gene for an elastinolytic aspartic proteinase from Aspergillus fumigatus and evidence of its secretion by the fungus during invasion of the host lung.
    Lee JD; Kolattukudy PE
    Infect Immun; 1995 Oct; 63(10):3796-803. PubMed ID: 7558282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin.
    Graf L; Craik CS; Patthy A; Roczniak S; Fletterick RJ; Rutter WJ
    Biochemistry; 1987 May; 26(9):2616-23. PubMed ID: 3111531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cleavage efficiency of the novel aspartic protease yapsin 1 (Yap3p) enhanced for substrates with arginine residues flanking the P1 site: correlation with electronegative active-site pockets predicted by molecular modeling.
    Olsen V; Guruprasad K; Cawley NX; Chen HC; Blundell TL; Loh YP
    Biochemistry; 1998 Mar; 37(9):2768-77. PubMed ID: 9485427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmodium falciparum Plasmepsin V (PfPMV): Insights into recombinant expression, substrate specificity and active site structure.
    Boonyalai N; Sittikul P; Yuvaniyama J
    Mol Biochem Parasitol; 2015 May; 201(1):5-15. PubMed ID: 25986559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular cloning and targeted deletion of PEP2 which encodes a novel aspartic proteinase from Aspergillus fumigatus.
    Reichard U; Cole GT; Rüchel R; Monod M
    Int J Med Microbiol; 2000 Mar; 290(1):85-96. PubMed ID: 11043985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-directed mutagenesis of prostatic acid phosphatase. Catalytically important aspartic acid 258, substrate specificity, and oligomerization.
    Porvari KS; Herrala AM; Kurkela RM; Taavitsainen PA; Lindqvist Y; Schneider G; Vihko PT
    J Biol Chem; 1994 Sep; 269(36):22642-6. PubMed ID: 8077215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystallographic and biochemical investigations of kumamolisin-As, a serine-carboxyl peptidase with collagenase activity.
    Wlodawer A; Li M; Gustchina A; Tsuruoka N; Ashida M; Minakata H; Oyama H; Oda K; Nishino T; Nakayama T
    J Biol Chem; 2004 May; 279(20):21500-10. PubMed ID: 15014068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of subtilisin BPN' by reaction site P1 mutants of Streptomyces subtilisin inhibitor.
    Kojima S; Nishiyama Y; Kumagai I; Miura K
    J Biochem; 1991 Mar; 109(3):377-82. PubMed ID: 1908859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the amino acid residues essential for proteolytic activity in an archaeal signal peptide peptidase.
    Matsumi R; Atomi H; Imanaka T
    J Biol Chem; 2006 Apr; 281(15):10533-9. PubMed ID: 16484219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active site specificity of plasmepsin II.
    Westling J; Cipullo P; Hung SH; Saft H; Dame JB; Dunn BM
    Protein Sci; 1999 Oct; 8(10):2001-9. PubMed ID: 10548045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redesign of the substrate specificity of human cathepsin D: the dominant role of position 287 in the S2 subsite.
    Scarborough PE; Dunn BM
    Protein Eng; 1994 Apr; 7(4):495-502. PubMed ID: 7913221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial aspartic proteinases.
    Hill J; Phylip LH
    FEBS Lett; 1997 Jun; 409(3):357-60. PubMed ID: 9224689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of substrate specificity of the Alzheimer's disease amyloid precursor protein beta-secretase.
    Sauder JM; Arthur JW; Dunbrack RL
    J Mol Biol; 2000 Jul; 300(2):241-8. PubMed ID: 10873463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae).
    Lufrano D; Faro R; Castanheira P; Parisi G; Veríssimo P; Vairo-Cavalli S; Simões I; Faro C
    Phytochemistry; 2012 Sep; 81():7-18. PubMed ID: 22727116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multidisciplinary cycles for protein engineering: site-directed mutagenesis and X-ray structural studies of aspartic proteinases.
    Pitts JE; Dhanaraj V; Dealwis CG; Mantafounis D; Nugent P; Orprayoon P; Cooper JB; Newman M; Blundell TL
    Scand J Clin Lab Invest Suppl; 1992; 210():39-50. PubMed ID: 1455178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of a residue at position 75 in the catalytic mechanism of a fungal aspartic proteinase, Rhizomucor pusillus pepsin. Replacement of tyrosine 75 on the flap by asparagine enhances catalytic efficiency.
    Park YN; Aikawa J; Nishiyama M; Horinouchi S; Beppu T
    Protein Eng; 1996 Oct; 9(10):869-75. PubMed ID: 8931126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure and function of Saccharomyces cerevisiae proteinase A.
    Parr CL; Keates RA; Bryksa BC; Ogawa M; Yada RY
    Yeast; 2007 Jun; 24(6):467-80. PubMed ID: 17447722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. X-ray structural studies of mammalian aspartic proteinases.
    Cooper JB; Newman MP
    Adv Exp Med Biol; 1991; 306():47-61. PubMed ID: 1812745
    [No Abstract]   [Full Text] [Related]  

  • 40. Differences in the P1' substrate specificities of pepsin A and chymosin.
    Kageyama H; Ueda H; Tezuka T; Ogasawara A; Narita Y; Kageyama T; Ichinose M
    J Biochem; 2010 Feb; 147(2):167-74. PubMed ID: 19819898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.