These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 8982987)

  • 1. Metallized polymer fibers as leadwires and intrafascicular microelectrodes.
    McNaughton TG; Horch KW
    J Neurosci Methods; 1996 Dec; 70(1):103-10. PubMed ID: 8982987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New material for implantable cardiac leads.
    Lobodzinski SS; Laks M
    J Electrocardiol; 2009; 42(6):566-73. PubMed ID: 19853730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode.
    Lawrence SM; Dhillon GS; Horch KW
    J Neurosci Methods; 2003 Dec; 131(1-2):9-26. PubMed ID: 14659819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and evaluation of conductive elastomer electrodes for neural stimulation.
    Keohan F; Wei XF; Wongsarnpigoon A; Lazaro E; Darga JE; Grill WM
    J Biomater Sci Polym Ed; 2007; 18(8):1057-73. PubMed ID: 17705998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information contained in sensory nerve recordings made with intrafascicular electrodes.
    Goodall EV; Lefurge TM; Horch KW
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):846-50. PubMed ID: 1743732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium-based biodegradable microelectrodes for neural recording.
    Zhang C; Wen TH; Razak KA; Lin J; Xu C; Seo C; Villafana E; Jimenez H; Liu H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110614. PubMed ID: 32204062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated wireless neural interface based on the Utah electrode array.
    Kim S; Bhandari R; Klein M; Negi S; Rieth L; Tathireddy P; Toepper M; Oppermann H; Solzbacher F
    Biomed Microdevices; 2009 Apr; 11(2):453-66. PubMed ID: 19067174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic field perturbation of neural recording and stimulating microelectrodes.
    Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronically implanted intrafascicular recording electrodes.
    Lefurge T; Goodall E; Horch K; Stensaas L; Schoenberg A
    Ann Biomed Eng; 1991; 19(2):197-207. PubMed ID: 2048777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of microelectrode materials for direct-current electrocorticography.
    Li C; Narayan RK; Wu PM; Rajan N; Wu Z; Mehan N; Golanov EV; Ahn CH; Hartings JA
    J Neural Eng; 2016 Feb; 13(1):016008. PubMed ID: 26655565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array.
    Campbell PK; Jones KE; Huber RJ; Horch KW; Normann RA
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):758-68. PubMed ID: 1937509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization.
    Lim KS; Chang WJ; Koo YM; Bashir R
    Lab Chip; 2006 Apr; 6(4):578-80. PubMed ID: 16572223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopowder molding method for creating implantable high-aspect-ratio electrodes on thin flexible substrates.
    Hu Z; Zhou DM; Greenberg R; Thundat T
    Biomaterials; 2006 Mar; 27(9):2009-17. PubMed ID: 16310844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-channel, implantable microdrive system for use with sharp, ultra-fine "Reitboeck" microelectrodes.
    Swadlow HA; Bereshpolova Y; Bezdudnaya T; Cano M; Stoelzel CR
    J Neurophysiol; 2005 May; 93(5):2959-65. PubMed ID: 15601730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A micromachined silicon sieve electrode for nerve regeneration applications.
    Akin T; Najafi K; Smoke RH; Bradley RM
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):305-13. PubMed ID: 8063296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo.
    Duan YY; Clark GM; Cowan RS
    Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular electrodes.
    Lawrence SM; Dhillon GS; Jensen W; Yoshida K; Horch KW
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):345-8. PubMed ID: 15473197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conical tungsten tips as substrates for the preparation of ultramicroelectrodes.
    Hermans A; Wightman RM
    Langmuir; 2006 Dec; 22(25):10348-53. PubMed ID: 17129002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.