These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 8983160)
1. A kinetic mechanism for nicotinic acetylcholine receptors based on multiple allosteric transitions. Edelstein SJ; Schaad O; Henry E; Bertrand D; Changeux JP Biol Cybern; 1996 Nov; 75(5):361-79. PubMed ID: 8983160 [TBL] [Abstract][Full Text] [Related]
2. Asymmetric and independent contribution of the second transmembrane segment 12' residues to diliganded gating of acetylcholine receptor channels: a single-channel study with choline as the agonist. Grosman C; Auerbach A J Gen Physiol; 2000 May; 115(5):637-51. PubMed ID: 10779320 [TBL] [Abstract][Full Text] [Related]
3. Nicotinic receptors: From protein allostery to computational neuropharmacology. Cecchini M; Changeux JP Mol Aspects Med; 2022 Apr; 84():101044. PubMed ID: 34656371 [TBL] [Abstract][Full Text] [Related]
4. Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels. Grosman C Biochemistry; 2003 Dec; 42(50):14977-87. PubMed ID: 14674774 [TBL] [Abstract][Full Text] [Related]
5. Kinetic, mechanistic, and structural aspects of unliganded gating of acetylcholine receptor channels: a single-channel study of second transmembrane segment 12' mutants. Grosman C; Auerbach A J Gen Physiol; 2000 May; 115(5):621-35. PubMed ID: 10779319 [TBL] [Abstract][Full Text] [Related]
7. Myasthenic nicotinic receptor mutant interpreted in terms of the allosteric model. Edelstein SJ; Schaad O; Changeux JP C R Acad Sci III; 1997 Dec; 320(12):953-61. PubMed ID: 9587473 [TBL] [Abstract][Full Text] [Related]
8. On the mechanism of a mammalian neuronal type nicotinic acetylcholine receptor investigated by a rapid chemical kinetic technique. Detection and characterization of a short-lived, previously unobserved, main receptor form in PC12 cells. Matsubara N; Hess GP Biochemistry; 1992 Jun; 31(24):5477-87. PubMed ID: 1377021 [TBL] [Abstract][Full Text] [Related]
9. An allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle. Ríos E; Karhanek M; Ma J; González A J Gen Physiol; 1993 Sep; 102(3):449-81. PubMed ID: 8245819 [TBL] [Abstract][Full Text] [Related]
10. Interactions of acetylcholine binding site residues contributing to nicotinic acetylcholine receptor gating: role of residues Y93, Y190, K145 and D200. Mallipeddi PL; Pedersen SE; Briggs JM J Mol Graph Model; 2013 Jul; 44():145-54. PubMed ID: 23831994 [TBL] [Abstract][Full Text] [Related]
11. Binding properties of agonists and antagonists to distinct allosteric states of the nicotinic acetylcholine receptor are incompatible with a concerted model. Krauss M; Korr D; Herrmann A; Hucho F J Biol Chem; 2000 Sep; 275(39):30196-201. PubMed ID: 10900197 [TBL] [Abstract][Full Text] [Related]
12. Identification of two critical residues within the Cys-loop sequence that determine fast-gating kinetics in a pentameric ligand-gated ion channel. Grutter T; de Carvalho LP; Dufresne V; Taly A; Changeux JP J Mol Neurosci; 2006; 30(1-2):63-4. PubMed ID: 17192629 [TBL] [Abstract][Full Text] [Related]
13. Positive and negative modulation of nicotinic receptors. Arias HR Adv Protein Chem Struct Biol; 2010; 80():153-203. PubMed ID: 21109220 [TBL] [Abstract][Full Text] [Related]
14. Probing the structure of the uncoupled nicotinic acetylcholine receptor. Sun J; Comeau JF; Baenziger JE Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):146-154. PubMed ID: 27871840 [TBL] [Abstract][Full Text] [Related]
15. The dissociation of acetylcholine from open nicotinic receptor channels. Grosman C; Auerbach A Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14102-7. PubMed ID: 11717464 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of nicotinic acetylcholine receptor by philanthotoxin-343: kinetic investigations in the microsecond time region using a laser-pulse photolysis technique. Jayaraman V; Usherwood PN; Hess GP Biochemistry; 1999 Aug; 38(35):11406-14. PubMed ID: 10471291 [TBL] [Abstract][Full Text] [Related]
17. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. Rothberg BS; Magleby KL J Gen Physiol; 1999 Jul; 114(1):93-124. PubMed ID: 10398695 [TBL] [Abstract][Full Text] [Related]
18. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Revah F; Bertrand D; Galzi JL; Devillers-Thiéry A; Mulle C; Hussy N; Bertrand S; Ballivet M; Changeux JP Nature; 1991 Oct; 353(6347):846-9. PubMed ID: 1719423 [TBL] [Abstract][Full Text] [Related]
19. On the mechanism of inhibition of the nicotinic acetylcholine receptor by the anticonvulsant MK-801 investigated by laser-pulse photolysis in the microsecond-to-millisecond time region. Grewer C; Hess GP Biochemistry; 1999 Jun; 38(24):7837-46. PubMed ID: 10387024 [TBL] [Abstract][Full Text] [Related]
20. Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids. Fernández-Carvajal AM; Encinar JA; Poveda JA; de Juan E; Martínez-Pinna J; Ivorra I; Ferragut JA; Morales A; González-Ros JM J Mol Neurosci; 2006; 30(1-2):121-4. PubMed ID: 17192656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]