These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8985909)

  • 1. Functional parasagittal compartments in the rat cerebellar cortex: an in vivo optical imaging study using neutral red.
    Chen G; Hanson CL; Ebner TJ
    J Neurophysiol; 1996 Dec; 76(6):4169-74. PubMed ID: 8985909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical responses evoked by cerebellar surface stimulation in vivo using neutral red.
    Chen G; Hanson CL; Ebner TJ
    Neuroscience; 1998 Jun; 84(3):645-68. PubMed ID: 9579774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of climbing fibers in determining the spatial patterns of activation in the cerebellar cortex to peripheral stimulation: an optical imaging study.
    Hanson CL; Chen G; Ebner TJ
    Neuroscience; 2000; 96(2):317-31. PubMed ID: 10683572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging parallel fiber and climbing fiber responses and their short-term interactions in the mouse cerebellar cortex in vivo.
    Dunbar RL; Chen G; Gao W; Reinert KC; Feddersen R; Ebner TJ
    Neuroscience; 2004; 126(1):213-27. PubMed ID: 15145087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel form of spreading acidification and depression in the cerebellar cortex demonstrated by neutral red optical imaging.
    Chen G; Hanson CL; Dunbar RL; Ebner TJ
    J Neurophysiol; 1999 Apr; 81(4):1992-8. PubMed ID: 10200237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical imaging of long-term depression in the mouse cerebellar cortex in vivo.
    Gao W; Dunbar RL; Chen G; Reinert KC; Oberdick J; Ebner TJ
    J Neurosci; 2003 Mar; 23(5):1859-66. PubMed ID: 12629190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of complex spike synchrony bands and climbing fiber projection determined by reference to aldolase C compartments in crus IIa of the rat cerebellar cortex.
    Sugihara I; Marshall SP; Lang EJ
    J Comp Neurol; 2007 Mar; 501(1):13-29. PubMed ID: 17206616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex.
    Mostofi A; Holtzman T; Grout AS; Yeo CH; Edgley SA
    J Neurosci; 2010 Jun; 30(26):8920-34. PubMed ID: 20592214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical imaging of cerebellar functional architectures: parallel fiber beams, parasagittal bands and spreading acidification.
    Ebner TJ; Chen G; Gao W; Reinert K
    Prog Brain Res; 2005; 148():125-38. PubMed ID: 15661186
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T; Onoda N
    Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic long-term depression (LTD) in vivo recorded on the rat cerebellar cortex.
    Vigot R; Batini C; Kado RT; Yamamori T
    Arch Ital Biol; 2002 Jan; 140(1):1-12. PubMed ID: 11889918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection.
    Gravel C; Hawkes R
    J Comp Neurol; 1990 Jan; 291(1):79-102. PubMed ID: 1688891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing mossy fiber terminal fields in the rat cerebellar cortex may segregate because of Purkinje cell compartmentation and not competition.
    Ji Z; Hawkes R
    J Comp Neurol; 1995 Aug; 359(2):197-212. PubMed ID: 7499524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal patterns of dorsal root-evoked network activity in the neonatal rat spinal cord: optical and intracellular recordings.
    Ziskind-Conhaim L; Redman S
    J Neurophysiol; 2005 Sep; 94(3):1952-61. PubMed ID: 15888530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic organization of the mouse cerebellar cortex in organotypic slice cultures.
    Dupont JL; Fourcaudot E; Beekenkamp H; Poulain B; Bossu JL
    Cerebellum; 2006; 5(4):243-56. PubMed ID: 17134987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deblurring of 3-dimensional patterns of evoked rat cerebellar cortical activity: a study using voltage-sensitive dyes and optical sectioning.
    Yae H; Elias SA; Ebner TJ
    J Neurosci Methods; 1992 May; 42(3):195-209. PubMed ID: 1501504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIA of the rat.
    Hallem JS; Thompson JH; Gundappa-Sulur G; Hawkes R; Bjaalie JG; Bower JM
    Neuroscience; 1999; 93(3):1083-94. PubMed ID: 10473273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartmentation of the cerebellar cortex of hummingbirds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase C beta 4.
    Iwaniuk AN; Marzban H; Pakan JM; Watanabe M; Hawkes R; Wylie DR
    J Chem Neuroanat; 2009 Jan; 37(1):55-63. PubMed ID: 18996471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The compartmentalization of the monkey and rat cerebellar cortex: zebrin I and cytochrome oxidase.
    Leclerc N; Doré L; Parent A; Hawkes R
    Brain Res; 1990 Jan; 506(1):70-8. PubMed ID: 2154279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.