These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8985909)

  • 41. Antigenic compartmentation of the primate and tree shrew cerebellum: a common topography of zebrin II in Macaca mulatta and Tupaia belangeri.
    Sillitoe RV; Malz CR; Rockland K; Hawkes R
    J Anat; 2004 Apr; 204(4):257-69. PubMed ID: 15061752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo.
    Reinert KC; Gao W; Chen G; Ebner TJ
    J Neurosci Res; 2007 Nov; 85(15):3221-32. PubMed ID: 17520745
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo.
    Reinert KC; Gao W; Chen G; Wang X; Peng YP; Ebner TJ
    Cerebellum; 2011 Sep; 10(3):585-99. PubMed ID: 21503591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Origin of the in vivo rat piriform cortex activity recorded with voltage-sensitive dyes: comparison of the optical signals and the field potentials.
    Litaudon P; Cattarelli M
    Brain Res; 1992 Oct; 594(1):171-5. PubMed ID: 1467937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrical responses evoked from the cerebellar surface by stimulating crus I.
    Combs CM; Diab AS
    Exp Neurol; 1969 Aug; 24(4):603-11. PubMed ID: 5799205
    [No Abstract]   [Full Text] [Related]  

  • 46. Spatial patterns of high-frequency oscillations in the rat cerebellar cortex.
    Ordek G; Sahin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4107-10. PubMed ID: 25570895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chronic myocardial and coronary arterial effects of intracoronary supersaturated oxygen therapy in swine with normal and ischemic-reperfused myocardium.
    Kaluza GL; Creech JL; Furer A; Afari ME; Milewski K; Yi GH; Cheng Y; Conditt GB; McGregor JC; Blum D; Rousselle SD; Granada JF; Burkhoff D
    Sci Rep; 2022 Apr; 12(1):5785. PubMed ID: 35388096
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected].
    Apps R; Hawkes R; Aoki S; Bengtsson F; Brown AM; Chen G; Ebner TJ; Isope P; Jörntell H; Lackey EP; Lawrenson C; Lumb B; Schonewille M; Sillitoe RV; Spaeth L; Sugihara I; Valera A; Voogd J; Wylie DR; Ruigrok TJH
    Cerebellum; 2018 Oct; 17(5):654-682. PubMed ID: 29876802
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Compartmentation of the cerebellar cortex: adaptation to lifestyle in the star-nosed mole Condylura cristata.
    Marzban H; Hoy N; Buchok M; Catania KC; Hawkes R
    Cerebellum; 2015 Apr; 14(2):106-18. PubMed ID: 25337886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Behavioral correlates of complex spike synchrony in cerebellar microzones.
    De Gruijl JR; Hoogland TM; De Zeeuw CI
    J Neurosci; 2014 Jul; 34(27):8937-47. PubMed ID: 24990915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse.
    Hawkes R
    Front Syst Neurosci; 2014; 8():41. PubMed ID: 24734006
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long-term in vivo time-lapse imaging of synapse development and plasticity in the cerebellum.
    Nishiyama N; Colonna J; Shen E; Carrillo J; Nishiyama H
    J Neurophysiol; 2014 Jan; 111(1):208-16. PubMed ID: 24133221
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reevaluation of the beam and radial hypotheses of parallel fiber action in the cerebellar cortex.
    Cramer SW; Gao W; Chen G; Ebner TJ
    J Neurosci; 2013 Jul; 33(28):11412-24. PubMed ID: 23843513
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial and temporal expression of lysosomal acid phosphatase 2 (ACP2) reveals dynamic patterning of the mouse cerebellar cortex.
    Bailey K; Rahimi Balaei M; Mehdizadeh M; Marzban H
    Cerebellum; 2013 Dec; 12(6):870-81. PubMed ID: 23780826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The compartmental restriction of cerebellar interneurons.
    Consalez GG; Hawkes R
    Front Neural Circuits; 2012; 6():123. PubMed ID: 23346049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pattern formation during development of the embryonic cerebellum.
    Dastjerdi FV; Consalez GG; Hawkes R
    Front Neuroanat; 2012; 6():10. PubMed ID: 22493569
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo.
    Mathiesen C; Caesar K; Thomsen K; Hoogland TM; Witgen BM; Brazhe A; Lauritzen M
    J Neurosci; 2011 Dec; 31(50):18327-37. PubMed ID: 22171036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Compartmentation of the cerebellar cortex in the naked mole-rat (Heterocephalus glaber).
    Marzban H; Hoy N; Aavani T; Sarko DK; Catania KC; Hawkes R
    Cerebellum; 2011 Sep; 10(3):435-48. PubMed ID: 21298580
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Parasagittally aligned, mGluR1-dependent patches are evoked at long latencies by parallel fiber stimulation in the mouse cerebellar cortex in vivo.
    Wang X; Chen G; Gao W; Ebner TJ
    J Neurophysiol; 2011 Apr; 105(4):1732-46. PubMed ID: 21289138
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.