These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8985917)

  • 1. Spontaneous switching between ortho- and antidromic spiking as the normal mode of firing in the cerebral giant neurons of freely behaving Lymnaea stagnalis.
    Jansen RF; Pieneman AW; ter Maat A
    J Neurophysiol; 1996 Dec; 76(6):4206-9. PubMed ID: 8985917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulatory role for the serotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. II. Photoinactivation.
    Yeoman MS; Kemenes G; Benjamin PR; Elliott CJ
    J Neurophysiol; 1994 Sep; 72(3):1372-82. PubMed ID: 7807218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further study of soma, dendrite, and axon excitation in single neurons.
    EYZAGUIRRE C; KUFFLER SW
    J Gen Physiol; 1955 Sep; 39(1):121-53. PubMed ID: 13252238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral Giant Cells are Necessary for the Formation and Recall of Memory of Conditioned Taste Aversion in Lymnaea.
    Sunada H; Lukowiak K; Ito E
    Zoolog Sci; 2017 Feb; 34(1):72-80. PubMed ID: 28148214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central pattern generator interneurons are targets for the modulatory serotonergic cerebral giant cells in the feeding system of Lymnaea.
    Yeoman MS; Brierley MJ; Benjamin PR
    J Neurophysiol; 1996 Jan; 75(1):11-25. PubMed ID: 8822538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulatory role for the serotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. I. Fine wire recording in the intact animal and pharmacology.
    Yeoman MS; Pieneman AW; Ferguson GP; Ter Maat A; Benjamin PR
    J Neurophysiol; 1994 Sep; 72(3):1357-71. PubMed ID: 7807217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior-dependent activities of a central pattern generator in freely behaving Lymnaea stagnalis.
    Jansen RF; Pieneman AW; ter Maat A
    J Neurophysiol; 1997 Dec; 78(6):3415-27. PubMed ID: 9405555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axonal branching pattern and coupling mechanisms of the cerebral giant neurones in the snail, Lymnaea stagnalis.
    Goldschmeding JT; Van Duivenboden YA; Lodder JC
    J Neurobiol; 1981 Sep; 12(5):405-24. PubMed ID: 6168740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axon terminal hyperexcitability associated with epileptogenesis in vitro. I. Origin of ectopic spikes.
    Stasheff SF; Hines M; Wilson WA
    J Neurophysiol; 1993 Sep; 70(3):961-75. PubMed ID: 8229182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat's brain stem.
    Gogan P; Gueritaud JP; Tyc-Dumont S
    J Physiol; 1983 Feb; 335():205-20. PubMed ID: 6875874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern generation in the buccal system of freely behaving Lymnaea stagnalis.
    Jansen RF; Pieneman AW; Maat AT
    J Neurophysiol; 1999 Dec; 82(6):3378-91. PubMed ID: 10601469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex.
    Cowan RL; Wilson CJ
    J Neurophysiol; 1994 Jan; 71(1):17-32. PubMed ID: 8158226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.
    Grill WM; Cantrell MB; Robertson MS
    J Comput Neurosci; 2008 Feb; 24(1):81-93. PubMed ID: 17562157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal projections of single bulbospinal inspiratory neurons revealed by spike-triggered averaging and antidromic activation.
    Dick TE; Berger AJ
    J Neurophysiol; 1985 Jun; 53(6):1590-603. PubMed ID: 2989449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses.
    Baranyi A; Szente MB; Woody CD
    J Neurophysiol; 1993 Jun; 69(6):1850-64. PubMed ID: 8350126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The passive electrical characteristics of giant neurones identified in the central nervous system of Lymnaea stagnalis.
    Safonova TA; Kiss I
    Acta Biochim Biophys Acad Sci Hung; 1979; 14(4):279-84. PubMed ID: 553444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of activity and axonal projections of the cerebral giant cells of the snail, Lymnaea stagnalis.
    McCrohan CR; Benjamin PR
    J Exp Biol; 1980 Apr; 85():149-68. PubMed ID: 6154759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo analysis of proprioceptive coding and its antidromic modulation in the freely behaving crayfish.
    Le Ray D; Combes D; Déjean C; Cattaert D
    J Neurophysiol; 2005 Aug; 94(2):1013-27. PubMed ID: 15829591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the properties of the modulatory cerebral giant cells contribute to aging in the feeding system of Lymnaea.
    Patel BA; Arundell M; Allen MC; Gard P; O'Hare D; Parker K; Yeoman MS
    Neurobiol Aging; 2006 Dec; 27(12):1892-901. PubMed ID: 16289475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first-order giant neurons of the giant fiber system in the squid: electrophysiological and ultrastructural observations.
    Pozzo-Miller LD; Moreira JE; Llinás RR
    J Neurocytol; 1998 Jun; 27(6):419-29. PubMed ID: 10192523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.