These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8986120)

  • 1. The sensitivity of conformational free energies of the alanine dipeptide to atomic site charges.
    Resat H; Maye PV; Mezei M
    Biopolymers; 1997 Jan; 41(1):73-81. PubMed ID: 8986120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.
    Wang ZX; Duan Y
    J Comput Chem; 2004 Nov; 25(14):1699-716. PubMed ID: 15362127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An application of coupled reference interaction site model/molecular dynamics to the conformational analysis of the alanine dipeptide.
    Freedman H; Truong TN
    J Chem Phys; 2004 Dec; 121(24):12447-56. PubMed ID: 15606265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.
    Mobley DL; Dumont E; Chodera JD; Dill KA
    J Phys Chem B; 2007 Mar; 111(9):2242-54. PubMed ID: 17291029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic multipoles: electrostatic potential fit, local reference axis systems, and conformational dependence.
    Kramer C; Gedeck P; Meuwly M
    J Comput Chem; 2012 Jul; 33(20):1673-88. PubMed ID: 22544510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conformational study of the dehydroalanine: dipeptide and homopolypeptide.
    Alemán C; Perez JJ
    Biopolymers; 1993 Dec; 33(12):1811-7. PubMed ID: 8268407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational preferences and cis-trans isomerization of azaproline residue.
    Kang YK; Byun BJ
    J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the solvent on the conformational behavior of the alanine dipeptide deduced from MD simulations.
    Rubio-Martinez J; Tomas MS; Perez JJ
    J Mol Graph Model; 2017 Nov; 78():118-128. PubMed ID: 29055185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational analysis of thiopeptides: free energy calculations on the effects of thio-substitutions on the conformational distributions of alanine dipeptides.
    Tran TT; Burgess AW; Treutlein H; Zeng J
    J Mol Graph Model; 2001; 20(3):245-56. PubMed ID: 11766049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the conformational equilibrium of the alanine dipeptide in water solution by using the averaged solvent electrostatic potential from molecular dynamics methodology.
    García-Prieto FF; Fdez Galván I; Aguilar MA; Martín ME
    J Chem Phys; 2011 Nov; 135(19):194502. PubMed ID: 22112087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicanonical ab inito QM/MM molecular dynamics simulation of a peptide in an aqueous environment.
    Jono R; Watanabe Y; Shimizu K; Terada T
    J Comput Chem; 2010 Apr; 31(6):1168-75. PubMed ID: 19847783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended solvent-contact model for protein solvation: test cases for dipeptides.
    Choi H; Kang H; Park H
    J Mol Graph Model; 2013 May; 42():50-9. PubMed ID: 23548585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational preferences of proline analogues with different ring size.
    Jhon JS; Kang YK
    J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metadynamics as a tool for mapping the conformational and free-energy space of peptides--the alanine dipeptide case study.
    Vymetal J; Vondrásek J
    J Phys Chem B; 2010 Apr; 114(16):5632-42. PubMed ID: 20361773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The non-polar solvent potential of mean force for the dimerization of alanine dipeptide: the role of solute-solvent van der Waals interactions.
    Su Y; Gallicchio E
    Biophys Chem; 2004 May; 109(2):251-60. PubMed ID: 15110943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio self-consistent field and potential-dependent partial equalization of orbital electronegativity calculations of hydration properties of N-acetyl-N'-methyl-alanineamide.
    Grant JA; Williams RL; Scheraga HA
    Biopolymers; 1990; 30(9-10):929-49. PubMed ID: 2092822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature and pressure effects on conformational equilibria of alanine dipeptide in aqueous solution.
    Takekiyo T; Imai T; Kato M; Taniguchi Y
    Biopolymers; 2004 Feb; 73(2):283-90. PubMed ID: 14755584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of Alanine Dipeptide Conformational Equilibria on Graphene and Hydroxylated Derivatives.
    Poblete H; Miranda-Carvajal I; Comer J
    J Phys Chem B; 2017 Apr; 121(15):3895-3907. PubMed ID: 28291356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.